
  
2022. 2  Vol. 41, No. 2                               Chinese  J.  Struct.  Chem.                                  2202001─2202013 

ARTICLE 
Drug Design, Molecular Docking, and ADMET Prediction  

of CCR5 Inhibitors Based on QSAR Study① 
 

TONG Jian-Boa, b②   ZHANG Xinga, b  
BIAN Shuaia, b    LUO Dinga, b  

a (College of Chemistry and Chemical Engineering,  

Shaanxi University of Science and Technology, Xi’an 710021, China) 
b (Shaanxi Key Laboratory of Chemical Additives for Industry,  

Shaanxi University of Science and Technology, Xi’an 710021, China) 
 

ABSTRACT    The chemokine receptor CCR5 is a main and necessary co-receptor for which HIV can recognize 
and enter the cells, and has been identified as a potential new target for the design of new anti-HIV therapeutic 
drugs. Highly active CCR5 inhibitors can prevent HIV-1 from entering target cells and block the process of 
infection. In this study, HQSAR and Topomer CoMFA methods were used to establish QSAR models for 75 
1-(3,3-diphenylpropyl)-piperidinyl and urea derivatives, and cross-validation and non-cross-validation were 
performed on the generated models. Two models with good statistical parameters and reliable prediction 
capabilities are obtained: (Topomer CoMFA: q2 = 0.687, r2 = 0.868, r2pred = 0.623; HQSAR: q2 = 0.781, r2 = 0.921, 
r2pred = 0.636). Contour maps and color code maps provide a lot of useful information for determining structural 
requirements that affect activity. Topomer search technology was used for virtual screening and molecular design. 
Surfex-dock method and ADMET technology were used to conduct molecular docking, oral bioavailability and 
toxicity prediction of the designed drug molecules. Results showed that A/ASN425, A/GLY198 and A/TRP427 may 
be the potential active residues of CCR5 inhibitors evaluated in this study, with 40 newly designed 
1-(3,3-diphenylpropyl)-piperidinyl and urea derivatives which have the main ADMET properties and can be used as 
a reliable anti-HIV inhibitor. These results provide a certain theoretical basis for the experimental verification of 
new compounds in the future. 
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1  INTRODUCTION  
 

Acquired immunodeficiency syndrome (AIDS) is a fatal 
infectious disease caused by the human immunodeficiency 
virus (HIV) attacking the most important CD4+ T lymphocy- 
tes in the immune system, which seriously endangers people’s 
lives, health and national public health security[1]. HIV is 
divided into HIV-1 and HIV-2 types[2]. HIV-1 is more toxic  
and contagious than HIV-2 and is the cause of most HIV 
infections in the world. So far, there is no drug that can 
eliminate the virus in the infected person. However, treatment 
programs for different stages of the virus life cycle have 

drastically reduced HIV infection from a fatal disease to a 
controllable disease. The HIV replication cycle can be divided 
into two stages: entry and post-entry[3]. The entry of HIV into 
target cells mainly includes three steps: (1) HIV trimeric 
envelope glycoprotein complex-mediated virus entry into 
susceptible target cells: surface subunit (gp120) attachment on 
the receptor (CD4); (2) gp120 interacts with the co-receptor, 
causing the gp120 envelope protein of the virus to bind to the 
chemokine receptor on the surface of the host cell; (3) 
transmembrane subunit (gp41) mediated membrane fusion. 
The post-entry step requires reverse transcriptase (RT), 
integrase (IN) and protease (PR) to complete the virus repli- 
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cation cycle. The current antiretroviral therapies (ARTs) for 
AIDS inhibit virus replication and make the AIDS a chronic 
infectious disease[4, 5], thereby prolonging the survival period 
of AIDS patients. However, this method cannot eradicate the 
virus from the body, and it may cause undesirable side effects 
and eventually infect the immune system[6]. 

Chemokine receptors are key regulators of cell migration in 
terms of immunity and inflammation. The main co-receptor of 
HIV involved in virus entry and cell-to-cell transmission 
during infection is CC chemokine receptor (CCR) 5 (CCR5), 
which has been identified as the best target for the design of 
new anti-HIV therapeutic drugs one[7]. Small molecule 
antagonism against CCR5 has become the focus of research 
by many pharmaceutical companies. Blocking the function of 
CCR5 can significantly reduce the activity of HIV with few 
side effects. Clinical trials provide evidence for this method to 
treat HIV infection[8]. Therefore, elucidating the mechanism 
by which HIV uses CCR5 to invade the target cell will help to 
develop new anti-HIV drugs more effectively. The drugs 
currently used to treat HIV are mainly divided into reverse 
transcriptase inhibitors, protease inhibitors, integrase 
inhibitors, fusion inhibitors and CCR5 antagonists[9]. But 
currently, the only CCR5 antagonist approved by FDA is 
Maraviroc, so CCR5 antagonists still have great potential. 
1-(3,3-diphenylpropyl)-piperidinyl and urea derivatives have 
been identified as a successful inhibitor of CCR5 and have 
attracted extensive attention from researchers. 

The establishment of a quantitative structure-activity 
relationship (QSAR) model can guide the modification of 
compound structures, design new and more active compounds, 
and predict their activity. Commonly used QSAR models 
include 2D QSAR and 3D QSAR[10]. 3D-QSAR is a method 
that combines theoretical or semi-empirical calculation with 
mathematical statistics to model the correlation between the 
molecular structure descriptors of a compound and its 
physicochemical properties, thereby revealing the structural 
factors that affect the action of a compound. The techniques 
most commonly used in 3D QSAR are comparative molecular 
field analysis (CoMFA) and comparative molecular similarity 
index analysis (CoMSIA)[11]. However, CoMFA has many 
limitations, which can be limited if the molecular structure is 
not three-dimensional and does not stack reasonably with 
other molecules in the database. Topomer comparative 

molecular field analysis (Topomer CoMFA)[12] is the 
second-generation CoMFA method that overcomes many 
limitations of CoMFA, and can predict the bioactivity of 
compounds in just a few minutes, making it more repeatable. 
2D QSAR is a method to quantitatively describe the 
relationship between the physicochemical properties and other 
measurable properties of a compound structure and its activity 
through a linear model or a nonlinear model[13]. Holographic 
quantitative structure-activity relationship (HQSAR) is a 
relatively new 2D QSAR method, which realizes the need of 
molecular arrangement and conformation specification by 
converting the chemical representation of the molecule into its 
corresponding molecular hologram[14]. In this study, Topomer 
CoMFA and HQSAR were used to model 75 1-(3,3-diphenyl- 
propyl)-piperidinyl and urea derivatives. 

 
2  MATERIALS AND METHODS 
 
2. 1  Data sources and molecular structure construction 

A total of 75 molecules and their biological activity (IC50) 
were gathered from the studies[15, 16] as the data set. SYBYL-X 
2.0 software was used to draw their molecular structures, and 
finally they were stored in the format of Mol 2. The basic 
skeleton of 75 1-(3,3-diphenylpropyl)-piperidinyl and urea 
derivatives is shown in Fig. 1, and the activity data are shown 
in Table S1. The formula〔pIC50=lg(1/IC50)〕was used to 
convert the IC50 values of 75 inhibitors into pIC50 values, so 
as to provide a larger value as the dependent variable of the 
model construction, and the pIC50 value range was obtained 
from 5.14 to 8.77. In order to obtain the best prediction results, 
the proper distribution of attributes and activity values in the 
test set is critical. The chemical composition of the test set 
must be quite similar to the chemical composition of some 
training sets. Fig. 2 shows the distribution of pIC50 values for 
all inhibitors, indicating that the diversity of activities in the 
data set is sufficient to construct a stable QSAR model. 
According to the pIC50 value and molecular structure 
characteristics, the entire data set was divided into two parts. 
63 training sets were used to construct QSAR model, and 12 
test sets (molecules marked with “*”) to detect and evaluate 
the QSAR model constructed by the training set. The ratio of 
training set to test set was 5.25. 
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Fig. 1.  Basic skeleton of 1-(3,3-diphenylpropyl)-piperidinyl and urea derivatives 

 
Fig. 2.  Activity distribution range of pIC50 

2. 2  Topomer CoMFA modeling 
Topomer CoMFA can quickly and efficiently describe the 

changes of the electrostatic field around the molecule, and 
comprehensively reveal the molecular structure information 
that affects the biological activity, so as to determine the 
properties of groups that affect the molecular activity[17]. The 
quality of the model is closely related to the choice of cutting 
method, and the splitting mode of R group. The most active 
compounds and other compounds in the data set were 
arranged according to the common structure. We chose 
compound No. 67, which had the lowest energy and highest 

activity, as the cutting template to obtain the best model 
results through different cutting methods (Fig. 3). The 
template molecule was cut into 4 groups R1 (blue), R2 (red), 
R3 (yellow) and R4 (purple), and the green fragment was the 
common skeleton. After cutting, the program will automa- 
tically identify other molecules in the training set and cut in 
the same way. The remaining few molecules that cannot be 
automatically identified will be manually broken until all 
molecules are cut, and the resulting structural fragments will 
be used for subsequent model analysis and virtual screening 
research. 

   
(a)                                      (b) 

Fig. 3.  Cutting method of (a) model 1 and (b) model 2 

 
2. 3  HQSAR model 

HQSAR is a fragment-based modeling method, which does 
not require the determination of 3D structure, molecular 

alignment and assumed conformation[18]. As a new QSAR 
technology with high predictive ability, it has irreplaceable 
advantages in molecular design. Each compound is divided 
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into structural fragments defined by fragment discrimination 
(FD) parameters: atomic number (A) can distinguish atom 
types, bond type (B) can distinguish chemical bonds formed 
between atoms, and atomic connections (C) can distinguish 
the hybridization state of the atoms inside the fragment, 
hydrogen (H), chirality (Ch) can distinguish the chirality of 
the atom in the fragment and the stereochemical information 
of the chemical bond, and the donor/acceptor (DA) 
distinguishes the hydrogen bond donor or acceptor of the 
fragment. The cyclic redundancy check (CRC) algorithm is 
used to assign a specific positive integer to each segment. 
Each of these integers was in correspondence with a bin in an 
integer array of fixed hologram length (HL, ranging from 53 
to 401). The bin occupancies of the molecular hologram are 
structural descriptors (independent variables)[19]. In HQSAR 
studies, there is a partial least-squares (PLS) relationship 
between these descriptors and attribute values. According to 
the same rules as Topomer CoMFA, we divided 75 
compounds into the same 63 training sets and 12 test sets for 
HQSAR modeling, which is more conducive to comparing the 
two models. 

In building the HQSAR model, we selected all 12 
holographic lengths (HL: 53, 59, 61, 71, 83, 97, 151, 199, 257, 
307, 353 and 401), and the default fragment size (FS: 4～7) 
and different combinations FD are used to generate the initial 
model. We analyzed 42 HQSAR models, studied the influence 
of different FD combinations on the model, and initially 
screened out better models. Then we selected different FS on 
the basis of the selected better models, and analyzed the 
influence of different FS on the HQSAR analysis results to 
obtain the optimal HQSAR model. 
2. 4  Partial least square (PLS) analysis 

The PLS method[20] is an extension of multiple regression 
analysis and is used to analyze the relationship between 
quantitative descriptors and biological activity in the model. 
The established model descriptors (electrostatic field and 
stereo field parameters) were used as independent variables, 
and pIC50 was used as the dependent variable for PLS 
regression analysis[21]. Leave one out (LOO) cross-validation 
is one of the simplest methods for internal model verification. 
PLS method was used for model fitting, and the prediction 
ability of the internal verification of the model is evaluated by 
the LOO method interactively, and the optimal number of 
components (N) is determined. At the same time, the 
cross-validation correlation coefficient (q2), the standard error 
of estimation (SEE), the non-cross-validation correlation 

coefficient (r2) and the Fischer ratio value (F) are calculated 
to verify the stability of the constructed model. Among them, 
r2 and SEE are automatically generated by the system. The 
larger the r2 and F values, the smaller the SEE value, which 
proves that the model's fitting ability is stronger, q2 < 0 (the 
model predictive ability is poor), 0.4～0.5 (the model can be 
considered), ˃ 0.5 (a statistically significant prediction model); 
high q2 and r2 (q2 ＞ 0.5, r2 ＞ 0.6) value can prove that the 
established 3D QSAR model and HQSAR model have high 
predictive ability[22]. The q2, r2, SEE and F are calculated for 
the data set as equations (1)～(4): �� = 1 − ∑�������������∑�������������                 (1)  

�� = �1 − ∑������������∑�������������                 (2) 

��� = �∑�����������������                    (3) 

� = ���(�����)�(���)�                         (4) 

Where Yexp is the experimental value of biological activity; 
Ycal is the simulated fitting value of biological activity; n is the 
number of samples; k is the number of parameters used in 
modeling; Ypred is the predicted activity of the test set 
compounds; Ymean is the calculated average activity of the 
training set compounds. 
2. 5  External validation of 3D QSAR and HQSAR 

Studies have shown that there is no correlation between 
internal prediction ability (q2) and external prediction ability 
(r2pred). The q2 obtained by the LOO method cannot be used to 
evaluate the external predictive ability of the model[23]. Good 
internal verification results only prove that the q2 value of the 
compounds training set is high, but it does not indicate that 
the established model has high predictive ability. Therefore, 
the QSAR model must pass effective external verification to 
ensure the model's ability to predict external samples. The 
best way to verify the model externally is to use a 
representative and large enough test set to verify, and the 
predicted value of the test set can be compared with the 
experimental value. The prediction correlation coefficient 
r2pred (r2pred ＞ 0.6)[24] based on the test set is calculated 
according to equation (5):  

������ = ���������� = 1 − ∑ (������)��������∑ (����̄)��������         (5) 

Where ∑ (�� − ���)��������  is the sum of squared deviations (SD) 
between the actual activity value of the molecules in the test  
set and the average activity of the molecules in the training set. 



 
2022  Vol. 41                                        Chinese  J.  Struct.  Chem.                                         2202005 ∑ (��� − ��)�����  is the sum of squared deviations (PRESS) 
between the predicted and actual activity values of the 
molecules in the test set. 
2. 6  Molecule screening 

Topomer Search technology is a virtual screening tool that 
can specify template molecules for cutting to obtain molecular 
structural fragments. It can quickly and reliably search for 
chemical structures of similar shapes in the database based on 
the R group search technology. In this study, by searching the 
compound database of ZINC (2015)[25] (a source of molecular 
structure fragments), combining topomer distance (TOPDIST) 
and substituent contribution values, the established Topomer 
CoMFA model was used to score these fragments, thus 
obtaining R1, R2, R3 and R4 with higher contribution values 
substituents, and then through splicing design to obtain more 
active CCR5 inhibitor small molecules. 
2. 7  Molecular docking 

The principle of molecular docking is the "lock-and-key 
model"[26]. The lock is a macromolecular receptor with 
different structures and the key is a small molecule ligand 
with a specific structure, which is used to explore the 
functional and mechanism of action of drugs and macro- 
molecular proteins[27]. Compounds and receptor active 
pockets are mainly combined through hydrogen bonds, van 
der waals forces and hydrophobic interactions. The formation 
of hydrogen bonds is crucial to the stability of the composite 
system. It is considered to be one of the most important 
interactions in the biorecognition process, and it has an 
important influence on the affinity of the compound and the 
receptor macromolecule. Due to the directional requirements 
of hydrogen bonds, the parameters that consider the formation 

of hydrogen bonds are: the distance between the hydrogen 
acceptor and the donor center is less than 3.5 Å. Through the 
research and analysis of the compound's hydrogen bond mode 
and receptor activity pocket, the inhibitory mechanism of the 
compound can be understood at the molecular or atomic level.  

SYBYL-X 2.0 (Surflex-dock method)[28] was used to 
conduct molecular docking studies on the data set reported in 
previous experimental studies on compound 67 with the 
highest activity and the four optimal designed molecules and 
the 4RZ8 protein. The relationship between the structure of 
side chain substituents of 1-(3,3-diphenylpropyl)-piperidinyl 
and urea derivatives and their inhibitory activity was further 
analyzed. By comparing the docking results, the reasons for 
the high inhibitory activity of compound 67 against HIV were 
expounded, and the antiviral mechanism of the designed 
compound was also understood. 

The crystal structure used in the docking process comes 
from the RSCB PDB database (http://www.rcsb.org; PDB ID: 
4RZ8)[29], and the docking mode is set to Surflex-dock (SFXC) 
and all amino acid residues in the ligand molecule 5 Å were 
set as superposed active pockets. Before molecular docking, 
protein macromolecules need to be pretreated to remove 
protein ligands, metal ions, water molecules and other 
residues and terminal residues[30], and add polar hydrogens 
and Gastelger-Hückel charges. Then the required small 
molecule ligand was extracted from the macromolecular 
protein, exposing the binding pocket (represented by the 
prototype molecule) (Fig. 4a). The binding pocket is filled 
with three molecular probes: NH (hydrogen bond donor), CH4 
(hydrogen bond acceptor) and CO (hydrophobic site). 

 

 
    (a)                                      (b) 

Fig. 4.  (a) Prototype molecular generation diagram (yellow area represents prototype molecule);  
(b) Interaction of compound 67 at the active site of the enzyme (PDB ID: 4RZ8) 

 

2. 8  Predicted pharmacokinetic and toxicity properties 
Computer simulation of ADME/T prediction can not only 

improve the overall quality of drug candidates, but also 
improve the success rate of drug development and reduce the 

overall cost of drug development, which has become the 
preferred method in early drug discovery. In silico absorption, 
distribution, metabolism, excretion (ADME) and toxicity (T) 
modeling are highly valued by pharmaceutical scientists as 



 
2202006        TONG J. B. et al.: Drug Design, Molecular Docking, and ADMET Prediction of CCR5 Inhibitors Based on QSAR Study        No. 2 

tools for rational drug design, and various predictive models 
related to ADME/T have been reported. Absorption is the 
process by which the drug enters the blood circulation from 
the site of use. Distribution is the redistribution of drugs 
through blood to various tissues by oral and subcutaneous 
injection to react with the corresponding target molecules. 
Metabolic stability describes the speed and extent of 
compound metabolism, and is one of the main factors 
affecting the pharmacokinetic properties. Toxicity is the 
extent to which a substance damages the body or organs.  

In this study, pharmacokinetic properties (absorption, 
distribution, metabolism and excretion) and toxicity (T) 
parameters were evaluated through the preADMET online 
server[31]: human intestinal absorption (HIA), skin 
permeability (SP, log P), in vitro caco-2 cell permeability, in 
vitro Madin-Darby Canine Kidney (MDCK) cell permeability, 
plasma protein binding (PPB), blood brain binding (BBB), 
p-glycoprotein (Pgp), cytochrome p450 isoforms inhibition 
data, total clearance, and toxicity (Ames test, rodent 
carcinogenicity assay and hERG-inhibition). 
 
3  RESULTS AND DISCUSSION 
 
3. 1  Analysis of Topomer CoMFA model results 

The modeling statistical parameters are shown in Table 1 
(model 1: r2 = 0.789, q2 = 0.681, r2pred = 0.610; model 2: r2 = 

0.868, q2 = 0.687, r2pred = 0.623). The two models q2 are both 
greater than 0.5, and r2 and r2pred are both greater than 0.6. The 
results show that the QSAR models constructed by the two 
cutting methods have good correlation and strong predictive 
ability, and they are ideal Topomer CoMFA models. Based on 
the comprehensive analysis, model 2 has better internal and 
external predictive capabilities, and better retains the core 
skeleton of the inhibitor in the cutting method, which is 
conducive to the selection of R groups, so it is selected for 
subsequent research and molecular design.  

The linear regression diagram between the experimental 
and predicted values of the Topomer CoMFA model is shown 
in Fig. 5a, and all samples are evenly distributed around the 
45° line. Fig. 5b shows that the predicted pIC50 values of these 
compounds are highly similar to the experimental values, 
indicating that the Topomer CoMFA model has shown 
satisfactory predictive power in the entire data set, for 
compounds with lower activity (5, 6, 8, 13, 15, 16) and more 
active compounds (34, 53, 56, 62, 63, 72) have good 
predictive power. These results confirm that the Topomer 
CoMFA model has good predictive power for 
1-(3,3-diphenylpropyl)-piperidinyl and urea derivatives, 
and further proves that the constructed QSAR model is 
relatively reliable with good fitting power. Therefore, the 
obtained 3D QSAR model can be used to screen and design 
new compounds. 
 

Table 1.  Comparison of Modeling Results of Topomer CoMFA  
Model R1 R2 R3 R4 N q2 r2 r2

pred F SEE q2
stderr r2

stderr 

1 0.71 1.21 1.53 0.10 2 0.681 0.789 0.610 112.052 0.423 0.61 0.47 

2 0.63 0.95 1.39 0.01 5 0.687 0.868 0.623 174.745 0.344 0.53 0.45 

R1, R2, R3 and R4: the contribution value of R1, R2, R3 and R4 groups; N: the optimal number of principal components;  
q2: the LOO cross-validation correlation coefficient; r2: the non-cross-validation correlation coefficient; r2

pred:  
the prediction correlation coefficient of the test set; F: the Fischer ratio value; SEE: the standard  
error of estimate; q2

stderr: the standard error of cross-validation coefficient;  
r2

stderr: the standard error of non-cross-validation coefficient.  

  
(a)            (b) 

Fig. 5.  Plots of experimental versus predicted pIC50 values for the training and test set molecules for Topomer CoMFA model 
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3. 2  Topomer CoMFA three-dimensional  
equipotential map analysis 

According to model 2, the three-dimensional equipotential 
map constructed with the most active molecule No. 67 as the 
template is shown in Fig. 6. Figs. 6a, 6c, 6e, and 6g are steric 
field maps of R1, R2, R3 and R4 accordingly. The green part 
shows that increasing the volume of substituents is beneficial 
to the improvement of compound activity, while the yellow 
part exhibits the opposite. Figs. 6b, 6d, 6f, and 6h are 
electrostatic fields of R1, R2, R3 and R4 correspondingly; the 
red area indicates that introducing a negatively charged 
substituent is beneficial to the improvement of compound 
activity, and the blue area suggests that introducing a 
positively charged substituent is beneficial to increase the 
activity of the compound.  

The position of the R1 substituent in Fig. 6a is covered by a 
large yellow area, indicating that it is not suitable to introduce 
bulky substituents here. For example, the -benzyloxy, -phenyl, 
-2,4,5-OMe, -NHCOMe and -CO2Me substituents on R1 of 
compounds 20, 21, 18, 24 and 29 (pIC50 = 5.46, 5.64, 5.96, 
6.17, 6.20) are substituted by compound 25 (pIC50 = 7.22) 
with -CN substituent, and the activity is obviously improved. 
In Fig. 6c, a smaller -CH3 group is introduced on the No. 31 
molecule (pIC50 = 6.82) at the R2 substituent position to 
replace the larger-allyl substituent on compound 42 (pIC50 = 
6.74), and the activity also increased. From Fig. 6e, it can be 
seen that there is a large green area at the position of the R3 
substituent, indicating that the introduction of a bulky group 
at this position is beneficial to the molecular inhibitory 

activity, such as molecule 67 (pIC50 = 8.77) which introduces 
a larger -SO2Me group at the R3 position to replace the 
smaller ones on compounds 57, 68, 65, 61 and 66 (pIC50 = 
6.51, 6.7, 7.07, 7.55, 7.92) -F, -NH2, -Ph, -CH3 and -SMe 
substituents, thus significantly increasing the activity; 
molecule 73 (pIC50 = 6.98) replaces the larger -NHCOMe 
substituent on compound 74 (pIC50 = 8.10) with the -NH2 
group at the R3 position, and the activity is remarkably 
reduced.   

Fig. 6b shows a large blue area near the benzene ring of the 
R1 substituent, indicating that the electronegativity of the 
group can be reduced in this area or the introduction of 
electron withdrawing groups is beneficial to the compound 
inhibitory activity increase. No. 4 substituent position of the 
benzene ring compound 30 (R2 = hydroxyl, pIC50 = 6.33) > 
compound 19 (R2 = bromo, pIC50 = 6.24) > compound 7 (R2 = 
chloro, pIC50 = 6.10), compound 25 (R2 = cyano, pIC50 = 
7.22) > compound 31 (R2 = nitro, pIC50 = 6.82), compound 54 
(R2 = methyl, pIC50 = 7.46) > compound 50 (R2 = hydrogen, 
pIC50 = 7.21). In Fig. 6f, for example, compound 64 (R3 = 
methoxy, pIC50 = 8.20) > compound 58 (R3 = chlorine, pIC50 
= 8.07) > compound 57 (R3 = fluorine, pIC50 = 6.51). In Fig. 
6d, there is a large red area near the R2 substituent, indicating 
that increasing the electronegativity of the group at this 
substituent position helps improve the activity of the 
compound. For example, compound 23 (R2 = methyl, pIC50 = 
6.54) > compound 32 (R2 = ethyl, pIC50 = 6.51), compound 
25 (R2 = methyl, pIC50 = 7.22) > compound 33 (R2 = ethyl, 
pIC50 = 6.51). 

    
(a)                      (c)                      (e)                   (g) 

    
(b)                   (d)                          (f)                (h) 

Fig. 6.  3D contour map of Topomer CoMFA model based on the template compound 67 

 

3. 3  Analysis of HQSAR model results 
The performance of the HQSAR model is affected by 

parameters such as HL (hologram length), FD (fragment 

discrimination type) and FS (fragment size), and these 
parameters need to be refined and optimized. We initially used 
the default FS (4～7) and all HLs and different combinations 
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of FD (atoms, bonds, chirality, connection, H-bond donor and 
H-bond acceptor) to generate the model. It can be seen from 
Table S2 that when the combination of fragment distingui- 
shing parameters is A/B/C/H/Ch/DA, a better model can be 
obtained: 4～7 for fragment size and 199 for hologram length, 
showing the highest q2(0.772) and r2(0.907) with 6 
components and the standard error of 0.290. 

Based on the better fragment parameters A/B/C/H/Ch/DA, 
different FS were selected to study the influence of FS on the 
HQSAR analysis results (Table S3). The results show that 
when FD is "A/B/C/H/Ch/DA" and FS is "6～ 7", the 
generated model is the best HQSAR model: 6～ 7 for 
fragment size and 199 for hologram length, showing the 
highest q2 (0.781) and r2 (0.921) with 6 components and the 
standard error of 0.293. 

Fig. 7a depicts the pIC50 correlation diagram of the 
experimental and predicted value activities of the HQSAR 
model data set. All samples are evenly distributed near the y = 

x line, showing a good linear relationship. Fig. 7b shows that 
the predicted pIC50 values of these compounds are almost 
consistent with the experimental values. The compounds with 
lower activity (2, 7, 11, 43, 44) and those with higher activity 
(33, 38, 41, 53) have good predictive ability, indicating that 
the HQSAR model has satisfactory prediction ability. These 
results confirm that the HQSAR model has a good predictive 
ability for CCR5 inhibitors, and also prove that the 
constructed QSAR model is relatively reliable, with good fit 
and robustness. Therefore, the obtained HQSAR model can be 
used to screen and design new compounds. 

  
(a)                                                   (b) 

Fig. 7.  Plots of the experimental versus predicted pIC50 values for the training and test set molecules for HQSAR model 

 

3. 4  HQSAR contribution map analysis 
The HQSAR model contribution graph of the most active 

compound No. 67 is shown in Fig. 8 and each atom reflects its 
contribution to the overall activity of the molecule. The 
atomic color code is white, indicating that the atom or group 
has a neutral contribution to the biological activity of the 
molecule. Atomic color code from orange, orange-red to red 
indicates that the adverse effect on the activity increases in 
sequence, and the atomic color code from yellow, cyan to 
green means that the beneficial contribution of the molecular 
biological activity value increases in sequence. We can 
visually determine the potential impact of fragments or atoms 
on the activity, and derive which fragments or atoms may be 
the key contributors to the activity value of CCR5 inhibitors 
based on different colors. 

The color code analysis of Fig. 8 shows large areas of cyan  

appearing in the R3 and R4 groups and the positions of the 
public skeleton in the picture, indicating that the groups and 
atoms at these positions have a greater influence on the 
activity of the compound, and also verify that the selection of 
the public skeleton is correct. The contribution of the H atom 
of the R3 group C–2 > C–4 > C–5 > C–3 = C–6. The R1 group 
C–2, C–3, C–4 near the white to yellow to green color changes, 
which proves that the atoms and groups at such positions 
gradually increase the biological activity value of the 
compound, indicating this substitution pattern is advantageous 
to the compound. The introduction of the -SO2Me group at the 
C–4 position of the R1 group has a positive contribution to the 
activity of the compound. But the introduction of the -SO2Me 
group at the C–4 position of the R4 group has no special 
contribution to the activity, and can be substituted by a more 
effective substituent.  
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Fig. 8.  Atomic contribution diagrams of compound 67 

 

3. 5  New compounds design and experimental activity 
According to the constructed 3D QSAR model, HQSAR 

model and the results of correlation analysis, compound 67 
was used as the template for molecular structure optimization. 
In the ZINC database, Topomer search was used to select the 
topomer distance close to 185, and the contribution value of 
each group exceeded that of the R group of the template 
molecule. 4 R1, 5 R2, 1 R3 and 2 R4 groups were selected for 
molecular design according to the permutation and combina- 
tion principle. A total of 40 new 1-(3,3-diphenyl-propyl)- 
piperidinyl and urea derivatives were designed, and the 
three-dimensional structures of the new molecules were 
constructed in SYBYL-X 2.0 and then model 2 was used to 
predict its activity. It can be seen from Table S4 that the 
predicted activity values of the 40 newly designed inhibitor 
molecules are higher than those of the template molecule, and 
the activity is increased by 10.82%～15.17%, which can be 
used as candidate compounds for new anti-AIDS drugs. The 
40 compounds designed can be further studied by ADMET to 
predict whether they have a good inhibitory effect on HIV. 
3. 6  Molecular docking result analysis 

The interaction patterns of the most active compound (67) 
and the newly designed compound with 4RZ8 protein were 
studied using the Surflex-dock program of SYBYL-X 2.0 
software and Discovery Studio Visual 2017. The docking 
scoring results of the compounds are listed in Table S5. The 
scoring function was used to select the best ligand and predict 
its binding mode. The higher the scoring function value of 
total score, the better the affinity between the small molecule 
ligand extracted from the macromolecular protein and the 
receptor; the closer the absolute value of crash to zero, the 
smaller the degree of inappropriateness between the ligand 
and the receptor extracted from the macromolecular protein. 

Polar is the score of the polarity function, which can be 
divided into binding sites located on the surface (the higher 
the score, the better) and the interior of the molecule (the 
lower the score, the better)[32]. Fig. 9 shows a molecular 
docking diagram of compound 67 that acts as a ligand to 
provide hydrogen bond receptors for forming one hydrogen 
bond with amino acid residues A/SER375, The total score, 
crash and polar are 5.27, –1.74, and 1.21, respectively. 

The hydrogen bonding action is shown as a green dotted 
line, and the hydrophobic action as a pink one. In Fig. 10a, the 
ligand (7-35) mainly forms four hydrogen bonds with 
A/ILE475, A/GLY198, A/TRP427 and A/GLY429 residues in 
the protein crystal, and forms hydrophobic interaction with 
amino acid residues such as A/PRO238 and A/ILE371. The 
total score, crash and polar are 10.07, –2.94, and 3.97, 
respectively. It can be seen that the selection of ligands and 
protein crystals is more appropriate, and the docking method 
is reasonable and reliable. As shown in Fig. 10b, compound 
7-33 mainly formed hydrogen bonding interactions with 
A/ILE475, A/ASN425, A/GLN432 and A/TRP427 residues in 
the crystal structure and hydrophobic interactions with amino 
acid residues like A/ILE371, B/ALA60 and A/GLY473, with 
the total score, crash, and polar of 7.34, –2.93, and 2.22, 
respectively.  

Fig. 10c shows that the newly designed compound 3~12 
formed a total of three hydrogen bonding interactions with 
residues A/LEU122, A/GLY198 and A/GLY124, with the total 
score, crash, and polar of 7.78, –2.52 and 1.43, respectively. 
Fig. 10d shows that the newly designed compounds 6~28 
formed a total of three hydrogen bonding interactions with 
residues A/TRP427, A/GLN428 and A/ASN425, and formed 
hydrophobic interactions with amino acid residues such as 
B/ALA60, with the total score, crash, and polar of 8.34, –1.51, 
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1.85, respectively. The results showed that the newly designed 
compounds formed strong hydrogen bonding interactions with 
amino acid residues such as A/TRP427, A/ASN425, 

A/GLY198, and these interactions enhanced the binding 
strengths of the ligands and receptors, so the docking results 
of the designed compounds were reliable and beneficial. 

 
Fig. 9.  Molecular docking results of the template 

  
(a)                         (b) 

  

(c)                           (d) 
Fig. 10.  Results of the newly designed molecular docking. (a) 7-35, (b) 7-33, (c) 3-12 and (d) 6-28 

 
3. 7  Comparative analysis of model results 

The residual values of the QSAR model of CCR5 inhibitors 
are shown in Figs. 11a and 11b, respectively. Compounds 8, 
15, 16, 32, 40, 53, 56 and 72 have the best predicted activity 
in Topomer CoMFA and HQSAR analysis (residual error < 
0.1). The comparison of the predicted activity value and the 
residual value of the Tomoper CoMFA and HQSAR models is 
shown in Table S6, and the comparison of the model results is 
listed in Table 2.  

The three-dimensional contour map, color code map, and 
experimental activity value of each compound are combined 
to analyze compound 67, which shows the area that affects the 
activity of CCR5 inhibitor. The introduction and optimization 

of functional groups improved the inhibitory activity of 1-(3, 
3-diphenylpropyl)-piperidinyl and urea derivatives, and the 
identification of the protein 4RZ8 binding pocket provided 
clues to its inhibitory mechanism.  

Although there are obvious differences between the two 
models in structure, the experimental results are consistent 
with the predicted bioactivity, which indicates that the two 
models have reliable predictive ability for the modification of 
1-(3,3-diphenylpropyl)-piperidinyl and urea derivative 
inhibitors. By comparison, the HQSAR model analysis results 
were consistent with the Topomer CoMFA model analysis 
results. From the molecular docking results, we believe that 
the formation of hydrogen bonds between the newly designed 
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molecule and amino acid residues A/TRP427, A/ASN425, and 
A/GLY198 has a positive effect on the inhibitory activity. In 
terms of the structure-activity relationship, the following 
conclusions can be drawn: R1 should be a small volume 

electron-withdrawing group, R2 should be a small volume 
group with positive charge, and R3 should be a large volume 
group with high electronegativity. This also explains why the 
template molecule 67 is the most active of all the compounds. 

  
(a)                                            (b) 

Fig. 11.  Residual plots between experimental and predicted values for (a) Topomer CoMFA model and (b) HQSAR model  

 
Table 2.  Comparison Results of HQSAR and Topomer CoMFA Models   

Model N q2 r2 r2
pred SEE HL F 

HQSAR 6 0.781 0.921 0.636 0.293 199 - 
Topomer CoMFA 6 0.687 0.868 0.623 0.344 - 174.745 

 
3. 8  Predicted pharmacokinetic and toxicity properties 

The ADMET properties of a compound are considered to 
be important criteria for determining whether a small 
compound can be used as a drug. Table S7 and Table S8 show 
the ADMET properties of the newly designed compound. We 
can see that all compound molecules show good intestinal 
absorption, indicating that these drugs can be well absorbed 
by the body. All compounds show strong PPB values; the 
compounds have low BBB values and low permeability to 
prevent drugs from entering the central nervous system (CNS). 
Determination of glycoprotein (P-gp) inhibition rate can 
predict the excretion performance of the target compound. 
The test compound has a good inhibitory effect on CYP3A4 
and P-gp, but has no inhibitory effect on CYP2C19. Most of 
the compounds have no inhibitory effect on CYP2C19 and 
CYP2D6. 

In AMES test, 14 test compounds showed mutagenic 
behavior, and the remaining compounds all showed 
non-mutagenic behavior. Except for compounds 06～ 15 
which have carcinogenic effect on rat, the other compounds 
have negative carcinogenic effect on mouse and rat, and the 
risk of being a cardiotoxic drug is moderate. It shows that the 
designed drug has high molecular safety and obvious 
pharmacological effects. The prediction of the ADMET 
properties of newly synthesized compounds proves that they 

have good lead compound properties. According to the 
prediction results of ADMET, theoretically, we can consider 
them to be promising CCR5 inhibitors. 
 
4  CONCLUSION 

 
In this study, Topomer CoMFA and HQSAR were used to 

model 75 1-(3,3-diphenylpropyl)-piperidinyl and urea 
derivatives as CCR5 inhibitors, and two models with good 
statistical parameters and reliable predictive ability were 
obtained. The two methods used different descriptors to obtain 
different modeling results. Although there were significant 
differences in structure, the experimental results were 
consistent with the predicted biological activity, and the 
obtained model results could be verified with each other. The 
contour map and color code map of the model show the effect 
of substituent structure on the biological activity of the 
compound. In addition, 40 new compounds were designed by 
virtual screening and their pIC50 were predicted, further 
verifying the accuracy of QSAR results. Molecular docking 
was used to study the binding mode between ligand and 
protein receptor. It was found that the amino acid residues 
formed the hydrogen bonding interaction between ligand and 
crystal structure. The newly designed compounds and amino 
acid residues A/GLY124, A/GLY198, A/ASN425, A/TRP427 
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and A/ILE475 can form strong hydrogen bonding interactions, 
which enhance the ligand-receptor binding strength. The 
ADMET prediction results are also satisfactory. We have 
designed a series of highly active CCR5 inhibitors using 

simple and efficient computer-aided design method. This 
work provides structural basis and theoretical guidance for 
rational design of CCR5 inhibitors. 
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