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ABSTRACT   A new quaternary metal thiophosphate, Cs2Ga3PS8, in triclinic P1 space group has been successfully 

synthesized by a reactive-flux method. Its structural framework is derived from well-known AMIIIMIVQ4 (A = alkali 

metal; MIII = Al, Ga, In; MIV = Si, Ge, Sn; Q = S, Se) system and composed of two-dimensional 
2 

∞[Ga3PS8]
2– layers 

separated by Cs+. The compound exhibits a wide band gap of 3.08 eV and congruent-melting behavior with melt point 

of 645 ℃. Interestingly, Cs2Ga3PS8 exhibits a broad photoluminescent emission band at 420 nm upon excitation at 

295 nm. Moreover, electronic structure calculations indicate that Cs2Ga3PS8 is a direct band gap compound and its 

luminescent process can be mainly ascribed to electron transfer from the S-3p and Ga-4p states to S-3p and P-3p. 
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1  INTRODUCTION  

 

In the past decades, many achievements have been made in 

exploring functional materials in chalcogenides, which can be 

used as nonlinear optics, electro optics, superionic conductors, 

and pyroelectrics[1-10]. As an important subgroup of 

chalcogenide, thiophosphates exhibit rich structural diversity 

as well as unique physical properties, and have received 

broad attention[11-15]. Thiophosphates are typically composed 

of tetrahedral [PQ4]
3– (Q = S, Se, Te) and ethane-like [P2Q6]

4– 

units, the combination of which could further generate more 

complex building blocks such as [P2Se6]
4–[16], [P2Se9]

4–[17], 

and infinite chains like [P2Se6]
2–[18], [PSe6]

–[19], [P5Se10]
5–[20]. 

Moreover, discrete [PxQy]
n– fragments can be assembled with 

other metals to form a variety of extended frameworks with 

fascinating properties. For example, A4GeP4Se12 (A = K, Rb, 

Cs) are excellent IR NLO materials exhibiting large 

second-harmonic-generation effect which is ∼30 times that of 

bench AgGaSe2 at 730 nm[21]. AZrPS6 (A = K, Rb, Cs) are 

unique examples of stable inorganic semiconductors with 

band gap emission very attractive for technological 

applications[22]. Rb4Sn5P4Se10 is a semimetallic seleno- 

phosphate and displays high conductivity of 51 S/cm at 300 

K[23]. Li10SnP2S12 is an affordable lithium superionic con- 

ductor with very high values of 7 mS/cm for the grain conduc- 

tivity[24]. Although many thiophosphates have been found, 

investigations on thiophosphates containing Ga are rare. 

During our attempts to explore A–Ga–P–Q system, a new phase, 

Cs2Ga3PS8 (1), has been synthesized. Herein, the syntheses, 

structures, and thermal and optical properties of 1 are presen- 

ted. Interestingly, the compound exhibits a broad photo- 

luminescent emission band at 420 nm. To gain further in- 

sights on its luminescent properties, the calculations of elec- 

tronic band structure and density of states were performed. 

 

2  EXPERIMENTAL  

 

2. 1  Syntheses 

The following reagents were used as obtained: Ba metal 

(99.9%), Ga metal (99.99%), P powder (99.99%), S powder 

(99.99%), and CsCl powder (99.99%). All operations were  

handled under an Ar atmosphere in a glove box. The title 
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compound was synthesized by the stoichiometric mixture of 

Ba, Ga, P, S, and CsCl with total mass of 500 mg in a molar 

ratio of 1:3:1:8:2. The mixture was loaded into quartz tubes 

and then flame-sealed. The tubes were placed into a 

computer-controlled furnace, heated to 750 ℃ over 24 hours, 

subsequently dwelled for 4 days, and finally cooled down to 

room temperature at 3 ℃/hour. After the products were 

washed with deionized water and dried with methanol, 

lamellar colorless single crystals of 1 were observed, and the 

samples for further property measurements were obtained by 

hand picking under a microscope. 

2. 2  Single-crystal X-ray diffraction 

Single-crystal X-ray diffraction measurement was per- 

formed on a Rigaku Pilatus CCD diffractometer using a 

graphite-monochromated Mo-Kα radiation (= 0.71073 Å) at 

293 K. The intensity dataset of the title compound was 

collected using an ω-scan technique and reduced using the 

CrysAlisPro[25]. The structure was solved by direct methods 

and refined with full-matrix least-squares methods on F2 with 

anisotropic thermal parameters for all atoms[26].  

2. 3  X-ray powder diffraction 

Powder X-ray diffraction (XRD) data were recorded on an 

automated Rigaku MiniFlex II X-ray diffractometer equipped 

with a diffracted monochromator set for Cu-Kα radiation ( = 

1.54057 Å), operating at 30 kV and 40 mA. The observed 

powder pattern of the title compound was well-suited to the 

simulated one (Fig. S1b).  

2. 4  Elemental analysis 

Selected crystals were fixed on the sample platform and 

analyzed by energy dispersive analyses X-ray spectroscopy 

(EDX) by using an EDX-equipped Hitachi S-3500 SEM 

spectrometer. Energy dispersive spectroscopy (EDS) analysis 

of the crystals of the title compound confirmed the presence 

of Cs/Ga/P/S with a molar ratio of 2.0/2.9/1.1/7.8, which is 

close to that determined from the single-crystal X-ray 

diffraction analysis (Fig. S1a). 

2. 5  UV-Vis diffuse reflectance spectroscopy 

Optical diffuse reflectance measurement was made to 

measure the band gap of the title compound by Perkin-Elmer 

Lambda 900 UV-Vis spectrophotometer accompanied with an 

integrating sphere attachment, with BaSO4 used as a 

reference. Absorption spectrum was calculated from the 

reflection spectrum using the Kubelka-Munk formula: α/S = 

(1 – R)2/2R[27], in which α is the absorption coefficient, S the 

scattering coefficient, and R the reflectance. 

2. 6  Photoluminescence 

The photoluminescence (PL) measurement of 1 was 

conducted on a single-grating Edinburgh EI920 fluorescence 

spectrometer equipped with a 450 W Xe lamp and a PMT 

detector.  

2. 7  Thermal analysis 

Thermal properties of the title compound were measured 

by differential scanning calorimetry (DSC) with a TGA/DSC 

Mettler Toledo thermal analyzer. Polycrystalline sample 

(approximately 10 mg) was put into a quartz tube, then 

evacuated to ～ 10–4 Torr and sealed. Finally, the tube 

experienced a heating/cooling cycle at a rate of 10 ℃/min. 

2. 8  Electronic structure calculation 

The electronic band structure and density of state (DOS) of 

1 were calculated by the CASTEP code[28] on the basis of 

density functional theory (DFT)[29], using a plane-wave 

expansion of the wave functions and an ultra-soft pseudo 

potential. The orbital electrons of Cs 5s25p66s2, Ga 

3d104s24p1 and S 3s23p4 were treated as valence electrons. A 

plane-wave cutoff energy was set to be 295 eV with a grid of 

Monkhorst-Pack k-points of 4×4×2. 

 

3  DISCUSSION 

 

3. 1  Structure description 

Compound 1 crystallizes in monoclinic space group of P1  

(No. 2) with a = 7.22730(10), b = 7.64670(10), c = 14.2671(3) 

Å, α = 91.005(2), β = 91.146(2), γ = 106.016(2)º, V = 

757.50(2) Å3 and Z = 2. The asymmetric unit is depicted in 

Fig. 1a. There are two crystallographically independent Cs 

atoms, two Ga atoms, eight S atoms, and two mixed positions 

with equal occupancy of Ga and P. The title compound 

exhibits a two-dimensional layer structure (Fig. 2a). All Ga 

and P atoms are tetrahedrally coordinated by S atoms to form 

GaS4 and (Ga/P)S4 tetrahedra. GaS4 tetrahedra share two 

corners with each other to form 13 tetrahedra chains 

extending along the a direction, which are further bridged by 

(Ga/P)S4 tetrahedra dimers alternately, forming a [Ga3PS8]
2– 

layer in the ac plane (Fig. 2b). The (Ga/P)S4 tetrahedra 

dimers are constructed by two edge-shared (Ga/P)S4 

tetrahedra. The counter Cs+ are embedded between 

[Ga3PS8]
2– layers.  
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(a)                                                   (b) 

Fig. 1.  Coordination environments of Ga and P atoms (a), and ionic interactions around Cs atoms (b) in the asymmetric unit of 1 

 

(a)                                                    (b) 

Fig. 2.  (a) Crystal structure of 1 viewed along the a axis. (b) A [Ga3PS8]
2–

 layer.  

Green and purple tetrahedra represent (Ga/P)S4 and GaS4 units, respectively. Black balls in (a) are Cs atoms 

 

Compound 1 belongs to Cs2M3
IIIMVQ8 (Q = S, Se, Te) 

family (type-I)[30], which can be derived from AMIIIMIVQ4 

family (type-II)[31, 32] by replacing all MIV atoms with equal 

amounts of MIII and MV atoms. The modification of 

AMIIIMIVQ4 family can also lead to A2M
IIMIV

3Q8 (Q = S, Se, 

Te) family (type-III) via the substitution of two MIII atoms by 

one MII and one MIV atoms[33-35]. The structures of type-I, II 

and III compounds are similar, but they exhibit different 

structure disorders of tetrahedrally coordinated centers. In 

type-II compounds, the trivalent and tetravalent metal ions 

are disordered over all tetrahedral sites. Type-III family of 

compounds is completely ordered, whereas in the type-I 

compounds, all MV and partial MIII positions are disordered. 

The flexible substitution behavior of AMIIIMIVQ4 family 

makes it a good platform for exploring new materials with 

rich structure features and physical properties[31, 32]. 

As listed in Table S2, Ga–S distances of fully occupied 

GaS4 tetrahedra in 1 are in the range of 2.2484～2.3361 Å, 

which are close to those in β-LaGaS3 (2.194～2.325 Å)[36] 

and SnGa4S7 (2.214～2.337 Å)[37]. In (Ga/P)S4 tetrahedra, the 

Ga/P–S distances range from 2.1087 to 2.2309 Å, which are 

between the typical P–S and Ga–S bond lengths. Two 

crystallographically independent Cs atoms are surrounded by 

nine and eleven S atoms, respectively, with ionic interactions. 

The Cs–S distances in the range of 3.469～4.118 Å (Fig. 1b) 

are consistent with those in Cs[Lu7S11]
[38]. 

3. 2  Experimental band gap and  

photoluminescent spectra 

The UV-Visible-NIR diffuse reflectance spectrum of 1 

exhibits obvious absorption edge and the band gap is 

estimated to 3.05 eV (Fig. 3a), which is consistent with its 

colorless feature. The band gap of 1 is comparable to those of 

some other thiophosphates, such as KAg2[PS4] (3.02 eV)[39] 

and K4GeP4S12 (3.0 eV)[21]. The photoluminescent spectra of 

1 were studied in the solid state at room temperature, and its 

excitation and emission spectra are plotted in Fig. 3b. 

Compound 1 exhibits a broad photoluminescent emission 

band at 420 nm upon excitation at 295 nm. 
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(a)                                     (b) 

Fig. 3.  (a) UV-Vis diffuse reflectance spectrum and (b) excitation and emission spectra of 1 

 

3. 3  Differential thermal analysis 

The differential scanning calorimetry (DSC) was used to 

examine the thermal properties of 1 (Fig. 4), which showed 

that the compound exhibits a broad endothermic peak on the 

heating curve, that is, crystals of 1 melt at 645 ℃ . 

Correspondingly, there is an exothermic peak at 626 ℃ for 

crystallization during the cooling process. 

 

Fig. 4.  DSC curves of 1 

 

3. 4  Electronic structure calculation 

To better understand the optical properties, theoretical 

calculations including electronic band structures and partial 

density of states (PDOS) of 1 are calculated by DFT. The 

calculated electronic band structure is plotted in Fig. 5a, 

indicating a direct band gap of 1.839 eV. The PDOS (Fig. 5b) 

shows that the conductive band (CB) close to the Fermi level 

is mostly composed of S-3p and P-3p states, as well as a 

small portion of P-3s state. While the valence band (VB) 

from –4.0 eV to the Fermi level originates predominately 

from S-3p and Ga-4p states. The contributions of Cs atom 

states to bands from –6 to 9 eV are negligible, so luminescent 

properties of 1 can be mainly ascribed to electron transfer 

from S-3p and Ga-4p states to the S-3p and P-3p ones. 

     

(a)                                               (b) 

Fig. 5.  Electronic band structure (a) and the partial density of states (b) of 1 
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4  CONCLUSION  

 

In summary, a new phase, Cs2Ga3PS8, in triclinic space 

group of P 1  has been successfully synthesized by 

high-temperature reactant flux method. Its structure is built 

from 2D infinite 
2 

∞ [Ga3PS8]
2– layers, separated by Cs+. 

UV-vis-NIR spectroscopy measurement indicated that 

Cs2Ga3PS8 shows a wide band gap of 3.08 eV. The melting 

point of this compound is 645 ℃. Cs2Ga3PS8 exhibits a 

broad photoluminescent emission band at 420 nm upon 

excitation at 295 nm. Theoretical calculation of electronic 

band structure indicated that fluorescent properties of 

Cs2Ga3PS8 origin charge transfer from S-3p and Ga-4p states 

to S-3p and P-3p states. 
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