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ABSTRACT   Two new thioantimonates, (NH4)2Sb10S16 (1) and K1.4(NH4)0.6Sb10S16 (2), have been synthesized 

by solvothermal method with the yields of 80% and 85%, respectively. Single-crystal X-ray diffraction (SCXRD) 

study reveals that 1 crystallizes in the monoclinic space group of Pn with a = 8.1284(4), b = 19.4587(9), c = 

9.1030(4) Å, β = 91.736(5)°, V = 1439.14(12) Å3, Z = 2, Dc = 4.077 g·cm-3, F(000) = 1576, μ = 10.389 mm-1, R = 

0.0343 and wR = 0.0624 (I > 2σ(I)); 2 also crystallizes in the monoclinic space group of Pn with a = 8.0989(6), b = 

19.3730(17), c = 9.0411(6) Å, β = 91.879(6)°, V = 1417.79(19) Å3, Z = 2, Dc = 4.207 g·cm-3, F(000) = 1598, μ = 

10.748 mm-1, R = 0.0323 and wR = 0.0664 (I > 2σ(I)). The anionic frameworks of two compounds both feature 

two-dimensional (2D) [Sb10S16]n
2n- layers. The stabilities and optoelectronic properties of 1 and 2 have been 

characterized. In particular, they are stable under acidic or alkaline conditions (pH = 0 or 12.5), showing excellent 

acid-based resistance.  
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1  INTRODUCTION  

 

Metal sulfides have received widespread attention because 

of their fascinating structural diversities, and potential 

applications in catalysis[1, 2], ion exchange[3, 4], nonlinear 

optics[5], semiconductors[6], optoelectronics[7-9], etc.. Among 

them, thioantimonates(III) have been extensively studied due 

to the stereochemical effect of lone-pair electrons on Sb(III), 

by which Sb(III) can form various coordination geometries of 

[SbSm] (m = 3～6), such as [SbS3][10], [SbS4][10], [SbS5][11] and 

[SbS6][12, 13]. These different structural units can be further 

polymerized to form a series of anionic polymeric moieties of 

[SbxSy]3x-2y (e.g., [Sb4S7]n
2n-, [Sb5S8]n

n-, [Sb5S9]n
3n-, 

[Sb8S13]n
2n- and [Sb9S15]n

2n-) with diverse dimensionalities by 

corner-sharing, edge-sharing, or face-sharing[14-21].  

In recent decades, a large number of metal sulfides have 

been synthesized and prepared by high temperature solid state 

reactions[22, 23], molten salt reactions[24], reactions in deep 

eutectic solvents[25-27], solvothermal methods[13, 28-31], and so 

on. Among these synthetic methods, solvothermal methods 

have been proved to be very effective for the preparation of 

thioantimonates(III). Up to now, thioantimonates(III) with 

metal cations (e.g., K+, Cs+, Ba2+, Sr2+ and Tl+)[11, 20, 32-34] or 

protonated organic amines (e.g., [Me4N]+, [Et4N]+ and 

[MeNH3]+)[10, 13-19] as charge-balancing agents have been 

extensively reported, such as (dienH2)[Sb8S13]·1.5H2O[35], 

(1,2-dapH)2[Sb8S13][35], (CH3NH3)2Sb8S13
[18], 

[C8N4H26]0.5[Sb7S11][36], Cs2Sb4S7
[37], SrSb4S7·6H2O[[33] and 

BaSb2S4
[32]. 

It is also worthy to note that the anions [Sb5S8]2- or 

[Sb10S16]2- with the Sb:S ratio of 1:1.6 are particularly 

prevalent in thioantimonates(III) whose cations are usually 

protonated organic amines or inorganic ions, such as ASb5S8 

(A = K, Tl)[11], (C3H12N2)[Sb10S16] ([C3H12N2]2+ = doubly 

protonated N,N-diethylethylenediamine)[38], [C6H17N3]Sb10S16 

([C6H17N3]2+ = doubly protonated 2-piperazine-N-ethylamine  
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cation)[18], [H3N(CH2)3NH3]Sb10S16 ([H3N(CH2)3NH3]2+ = 

doubly protonated 1,3-propanediamine)[39], 

[C6H18N2]Sb10S16·H 2O ([C6H18N2]2+ = doubly protonated 

1,2-diaminopropane)[40]. However, it is rare for NH4
+ to be 

introduced into thioantimonates(III) as charge-balancing agent 

to form the polymeric anions of [SbxSy]n- except NH4Sb4S7
[41] 

and NH4SbS2
[42]. Herein, we report two 2D thioantimo- 

nates(III) synthesized by the mild solvothermal reactions, 

namely (NH4)2Sb10S16 (1) and K1.6(NH4)0.4Sb10S16 (2), which 

contain NH4
+ and the mixed cations of NH4

+ and K+ as the 

charge-balancing agents, respectively. Their crystal structures, 

stabilities and optoelectronic properties were studied.  

 

2  EXPERIMENTAL 

 

All reagents and chemicals employed in this study were 

analytical reagents and commercially available without 

further purification. Single-crystal X-ray diffraction 

(SCXRD) data for 1 and 2 were collected by using 

graphite-monochromatized Mo-Kα radiation (λ = 0.71073 

Å) at 100 K on an Agilent Supernova Dual diffractometer 

with an Atlas detector. Elemental analyses (EA) of H, N 

and S were obtained by using a German Elementary Vario 

MICRO instrument. Solid-state ultraviolet-visible (UV-Vis) 

spectra were analyzed at room temperature with BaSO4 as 

a standard (100% reflectance) using a Shimadzu UV-2600 

spectrometer spectrophotometer. Powder X-ray diffraction 

(PXRD) measurement was performed at room temperature 

on a Miniflex II diffractometer at 30 kV, 15 mA using 

CuK radiation (λ = 1.54178 Å) in the angular range of 2θ 

= 5～50° or 5～55°. Thermogravimetric analyses (TGA) 

were performed with a NETZSCH STA449C thermo- 

gravimetric analyzer at a heating rate of 10 ℃·min-1 under 

a nitrogen atmosphere. 

2. 1  Synthesis of (NH4)2Sb10S16 (1) 

A mixture of Sb(Ac)3 (0.5 mmol) and S (1.5 mmol) in a 

mixed solvent of 3 mL NH3·H 2O and 0.5 mL N2H4·H 2O was 

sealed in a 20 mL Teflon-lined stainless-steel reactor and 

heated at 180 ℃ for 5 days. Then the product was washed 

with distilled water and ethanol and then dried in air. The 

dark-red plate-like crystals of 1 were obtained with a high 

yield (71 mg, 80% based on Sb(Ac)3). EA, calcd.: H, 0.46; N, 

1.59; S, 29.04%. Found: H, 0.36; N, 1.64; S, 28.96%). 

2. 2  Synthesis of K1.4(NH4)0.6Sb10S16 (2) 

A mixture of KCl (1.6 mmol), Sb(Ac)3 (0.5 mmol) and S 

(1.5 mmol) in a mixed solvent of 2 mL NH3·H 2O and 1 mL 

N2H4·H 2O was sealed in a 20 mL Teflon-lined stainless-steel 

reactor and heated at 180 ℃ for 5 days. After that, the product 

was washed with distilled water and ethanol and then dried in 

air. The dark-red plate-like crystals of 2 were obtained with a 

high yield (77 mg, 85% based on Sb(Ac)3). EA, calcd.: H, 

0.13; N, 0.47; S, 28.56%. Found: H, < 0.3; N, 0.51; S, 

28.76%). 

2. 3  Structure refinements 

The dark-red plate-like crystals 1 and 2 were selected for 

the diffraction experiment with dimensions of 0.20mm × 

0.10mm × 0.02mm and 0.20mm × 0.05mm × 0.02mm, 

respectively. For 1, a total of 11812 reflections were 

collected in the range of 3.331°≤≤31.200° with Rint = 

0.0402, of which 6555 are independent. Crystal 1 

crystallizes in the monoclinic Pn space group with: a = 

8.1284(4), b = 19.4587(9), c = 9.1030(4) Å, β = 91.736(5)°, 

V = 1439.14(12) Å3, Z = 2, Dc = 4.077 g·cm-3, F(000) = 

1576, μ = 10.389 mm-1, R = 0.0343 and wR = 0.0624 (I > 

2σ(I). A total reflections of 9746 were collected in 2 in the 

range of 10.2°≤≤29.634° with Rint = 0.0376, 5225 of 

which are independent. Crystal 2 is also of monoclinic Pn 

space group  with a = 8.0989(6), b = 19.3730(17), c = 

9.0411(6) Å, β = 91.879(6)°, V = 1417.79(19) Å3, Z = 2, Dc 

= 4.207 g·cm-3, F(000) = 1598, μ = 10.748 mm-1, R = 

0.0323 and wR = 0.0664 (I > 2σ(I)). SHELX 2018 package 

was used to solve and refine the structure on F2 by the 

full-matrix least-squares methods[43]. Selected bond 

lengths and bond angles of 1 and 2 are shown in Tables 1 

and 2, respectively, and selected hydrogen bonds are listed 

in Table 3.  
 

Table 1.  Selected Bond Lengths (Å) for 1 and 2 
 

1 2 

Bond Dist. Bond Dist. 

Sb(1)−S(2) 2.454(3) Sb(1)−S(2) 2.446(3) 
Sb(1)−S(3) 2.486(3) Sb(1)−S(3) 2.490(4) 
Sb(1)−S(1) 2.546(3) Sb(1)−S(1) 2.558(3) 
Sb(2)−S(1) 2.443(3) Sb(2)−S(1) 2.433(3) 
Sb(2)−S(2) 2.656(3) Sb(2)−S(2) 2.648(3) 

To be continued 
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Sb(2)−S(5) 2.701(3) Sb(2)−S(13)#1 2.722(4) 
Sb(2)−S(4) 2.728(3) Sb(2)−S(4) 2.735(3) 
Sb(2)−S(13)#1 2.782(3) Sb(2)−S(5) 2.760(4) 
Sb(3)−S(4) 2.419(3) Sb(3)−S(4) 2.408(3) 
Sb(3)−S(6) 2.507(3) Sb(3)−S(6) 2.505(3) 
Sb(3)−S(7) 2.519(3) Sb(3)−S(7) 2.518(4) 
Sb(4)−S(7) 2.486(3) Sb(4)−S(7) 2.488(3) 
Sb(4)−S(16)#2 2.501(3) Sb(4)−S(16)#2 2.501(4) 
Sb(4)−S(5) 2.526(3) Sb(4)−S(5) 2.504(3) 
Sb(5)−S(9) 2.399(3) Sb(5)−S(9) 2.403(3) 
Sb(5)−S(6) 2.508(3) Sb(5)−S(6) 2.506(4) 
Sb(5)−S(8) 2.615(3) Sb(5)−S(8) 2.604(3) 
Sb(5)−S(7) 2.926(3) Sb(5)−S(7) 2.911(3) 
Sb(6)−S(8) 2.449(3) Sb(6)−S(8) 2.449(3) 
Sb(6)−S(10) 2.515(3) Sb(6)−S(10) 2.511(4) 
Sb(6)−S(13) 2.682(3) Sb(6)−S(13) 2.745(3) 
Sb(6)−S(9) 2.835(3) Sb(6)−S(9) 2.749(4) 
Sb(7)−S(10) 2.425(3) Sb(7)−S(10) 2.424(3) 
Sb(7)−S(11) 2.475(3) Sb(7)−S(11) 2.478(3) 
Sb(7)−S(12)#3 2.503(3) Sb(7)−S(12)#3 2.502(4) 
Sb(8)−S(13) 2.446(3) Sb(8)−S(13) 2.436(3) 
Sb(8)−S(12) 2.490(3) Sb(8)−S(11) 2.487(4) 
Sb(8)−S(11) 2.500(3) Sb(8)−S(12) 2.489(3) 
Sb(9)−S(14) 2.470(3) Sb(9)−S(14) 2.469(3) 
Sb(9)−S(3) 2.472(3) Sb(9)−S(3) 2.477(3) 
Sb(9)−S(5) 2.695(3) Sb(9)−S(5) 2.651(4) 
Sb(9)−S(15) 2.789(3) Sb(9)−S(15) 2.830(4) 
Sb(10)−S(15) 2.418(3) Sb(10)−S(15) 2.413(3) 
Sb(10)−S(16) 2.467(3) Sb(10)−S(16) 2.464(3) 
Sb(10)−S(14) 2.530(3) Sb(10)−S(14) 2.515(4) 

Compound 1: Symmetry transformations: #1: x–1, y, z+1; #2: x+1/2, –y+1, z–1/2; #3: x–1/2, –y+2, z+1/2;   
Compound 2: Symmetry transformations: #1: x–1, y, z+1; #2: x+1/2, –y+1, z–1/2; #3: x, y, z–1;  

 

Table 2.  Selected Bond Angles (°) for 1 and 2 
 

1 2 

Angle (°) Angle (°) 

S(2)−Sb(1)−S(3) 97.22(11) S(2)−Sb(1)−S(3) 97.35(11) 
S(2)−Sb(1)−S(1) 87.77(10) S(2)−Sb(1)−S(1) 87.60(11) 
S(3)−Sb(1)−S(1) 100.85(11) S(3)−Sb(1)−S(1) 100.56(11) 
S(1)−Sb(2)−S(2) 85.56(10) S(1)−Sb(2)−S(2) 85.88(11) 
S(1)−Sb(2)−S(5) 89.19(10) S(1)−Sb(2)−S(13)#1 90.60(11) 
S(2)−Sb(2)−S(5) 90.73(10) S(2)−Sb(2)−S(13)#1 94.60(11) 
S(1)−Sb(2)−S(4) 85.66(10) S(1)−Sb(2)−S(4) 85.63(10) 
S(2)−Sb(2)−S(4) 170.79(10) S(2)−Sb(2)−S(4) 171.47(10) 
S(5)−Sb(2)−S(4) 91.96(10) S(13)#1−Sb(2)−S(4) 84.64(10) 
S(1)−Sb(2)−S(13)#1 89.62(10) S(1)−Sb(2)−S(5) 87.61(11) 
S(2)−Sb(2)−S(13)#1 93.61(10) S(2)−Sb(2)−S(5) 89.58(11) 
S(5)−Sb(2)−S(13)#1 175.40(10) S(13)#1−Sb(2)−S(5) 175.32(10) 
S(4)−Sb(2)−S(13)#1 83.52(9) S(4)−Sb(2)−S(5) 90.91(10) 
S(4)−Sb(3)−S(6) 98.81(11) S(4)−Sb(3)−S(6) 97.93(11) 
S(4)−Sb(3)−S(7) 91.00(10) S(4)−Sb(3)−S(7) 91.35(11) 
S(6)−Sb(3)−S(7) 95.03(10) S(6)−Sb(3)−S(7) 95.20(11) 
S(7)−Sb(4)−S(16)#2 88.21(11) S(7)−Sb(4)−S(16)#2 88.21(11) 
S(7)−Sb(4)−S(5) 94.13(11) S(7)−Sb(4)−S(5) 94.72(11) 
S(16)#2−Sb(4)−S(5) 88.94(10) S(16)#2−Sb(4)−S(5) 89.55(11) 
S(9)−Sb(5)−S(6) 95.99(11) S(9)−Sb(5)−S(6) 94.61(12) 

To be continued 
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S(9)−Sb(5)−S(8) 89.43(11) S(9)−Sb(5)−S(8) 88.93(11) 

S(6)−Sb(5)−S(8) 93.01(10) S(6)−Sb(5)−S(8) 93.31(11) 

S(9)−Sb(5)−S(7) 85.12(10) S(9)−Sb(5)−S(7) 85.20(10) 

S(6)−Sb(5)−S(7) 85.65(10) S(6)−Sb(5)−S(7) 86.09(10) 

S(8)−Sb(5)−S(7) 174.22(10) S(8)−Sb(5)−S(7) 174.03(10) 

S(8)−Sb(6)−S(10) 93.16(11) S(8)−Sb(6)−S(10) 92.60(11) 

S(8)−Sb(6)−S(13) 87.15(10) S(8)−Sb(6)−S(13) 85.46(10) 

S(10)−Sb(6)−S(13) 91.30(10) S(10)−Sb(6)−S(13) 91.22(11) 

S(8)−Sb(6)−S(9) 83.50(10) S(8)−Sb(6)−S(9) 84.73(11) 

S(10)−Sb(6)−S(9) 101.03(10) S(10)−Sb(6)−S(9) 100.84(12) 

S(13)−Sb(6)−S(9) 164.89(10) S(13)−Sb(6)−S(9) 164.77(11) 

S(10)−Sb(7)−S(11) 96.12(11) S(10)−Sb(7)−S(11) 97.40(11) 

S(10)−Sb(7)−S(12)#3 92.47(11) S(10)−Sb(7)−S(12)#4 91.23(11) 

S(11)−Sb(7)−S(12)#3 85.35(10) S(11)−Sb(7)−S(12)#4 85.54(11) 

S(13)−Sb(8)−S(12) 101.01(11) S(13)−Sb(8)−S(12) 101.25(11) 

S(13)−Sb(8)−S(11) 93.88(10) S(13)−Sb(8)−S(11) 93.45(11) 

S(12)−Sb(8)−S(11) 92.85(10) S(11)−Sb(8)−S(12) 91.92(12) 

S(14)−Sb(9)−S(3) 99.00(11) S(14)−Sb(9)−S(3) 99.00(11) 

S(14)−Sb(9)−S(5) 78.65(10) S(14)−Sb(9)−S(5) 79.77(11) 

S(3)−Sb(9)−S(5) 95.54(10) S(3)−Sb(9)−S(5) 95.17(11) 

S(14)−Sb(9)−S(15) 81.43(10) S(14)−Sb(9)−S(15) 81.02(11) 

S(3)−Sb(9)−S(15) 84.52(10) S(3)−Sb(9)−S(15) 84.12(11) 

S(5)−Sb(9)−S(15) 159.85(10) S(5)−Sb(9)−S(15) 160.45(10) 

S(15)−Sb(10)−S(16) 98.96(11) S(15)−Sb(10)−S(16) 98.78(11) 

S(15)−Sb(10)−S(14) 88.03(11) S(15)−Sb(10)−S(14) 88.94(11) 

S(16)−Sb(10)−S(14) 89.38(10) S(16)−Sb(10)−S(14) 89.21(11) 

Sb(2)−S(1)−Sb(1) 94.46(11) Sb(2)−S(1)−Sb(1) 94.26(11) 

Sb(1)−S(2)−Sb(2) 91.50(10) Sb(1)−S(2)−Sb(2) 91.75(10) 

Sb(9)−S(3)−Sb(1) 115.85(13) Sb(9)−S(3)−Sb(1) 115.72(15) 

Sb(3)−S(4)−Sb(2) 103.30(11) Sb(3)−S(4)−Sb(2) 102.78(12) 

Sb(4)−S(5)−Sb(9) 104.35(11) Sb(4)−S(5)−Sb(9) 103.85(12) 

Sb(4)−S(5)−Sb(2) 93.37(10) Sb(4)−S(5)−Sb(2) 93.19(11) 

Sb(9)−S(5)−Sb(2) 119.57(12) Sb(9)−S(5)−Sb(2) 120.18(11) 

Sb(3)−S(6)−Sb(5) 94.49(11) Sb(3)−S(6)−Sb(5) 94.01(12) 

Sb(4)−S(7)−Sb(3) 99.12(11) Sb(4)−S(7)−Sb(3) 98.91(12) 

Sb(4)−S(7)−Sb(5) 97.12(10) Sb(4)−S(7)−Sb(5) 97.83(11) 

Sb(3)−S(7)−Sb(5) 84.76(9) Sb(3)−S(7)−Sb(5) 84.59(10) 

Sb(6)−S(8)−Sb(5) 95.63(10) Sb(6)−S(8)−Sb(5) 94.34(10) 

Sb(5)−S(9)−Sb(6) 91.26(11) Sb(5)−S(9)−Sb(6) 91.78(11) 

Sb(7)−S(10)−Sb(6) 102.86(11) Sb(7)−S(10)−Sb(6) 103.11(13) 

Sb(7)−S(11)−Sb(8) 102.22(11) Sb(7)−S(11)−Sb(8)   102.06(13) 

Sb(8)−S(12)−Sb(7)#4 119.14(12) Sb(8)−S(12)−Sb(7)#6 95.11(10) 

Sb(8)−S(13)−Sb(6) 101.86(12) Sb(9)−S(14)−Sb(10) 102.96(13) 

Sb(8)−S(13)−Sb(2)#5 103.52(11) Sb(8)−S(13)−Sb(6) 101.92(11) 

Sb(6)−S(13)−Sb(2)#5 95.11(10) Sb(2)#7−S(13)−Sb(6) 94.93(11) 

Sb(9)−S(14)−Sb(10) 96.81(11) Sb(9)−S(14)−Sb(10) 97.15(11) 

Sb(10)−S(15)−Sb(9) 91.50(10) Sb(10)−S(15)−Sb(9) 90.57(11) 

Sb(10)−S(16)−Sb(4)#6 101.89(11) Sb(10)−S(16)−Sb(4)#8 101.88(13) 

Compound 1: Symmetry transformations: #1: x–1, y, z+1; #2: x+1/2, –y+1, z–1/2; #3: x–1/2, –y+2, z+1/2;  
#4: x+1/2, –y+2, z–1/2; #5: x+1, y, z–1; #6: x–1/2, –y+1, z+1/2. 
Compound 2: Symmetry transformations: #1: x–1, y, z+1; #2: x+1/2, –y+1, z–1/2;  
#4: x–1/2, –y+2, z+1/2; #6: x+1/2, –y+2, z–1/2; #7: x+1, y, z–1; x–1/2, #8: x–1/2, –y+1, z+1/2;  
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Table 3.  Selected Hydrogen Bond Lengths (Å) and Bond Angles () for 1 and 2  
1 

D−H··· A d(D−H) d(H··· A) d(D··· A) DHA 

N(1)−H(1A)··· S(2) 0.89 2.65 3.471(10) 154 
N(1)−H(1B)···S(14)#6 0.89 2.55 3.406(10) 163 
N(1)−H(1C)···S(14) 0.89 2.48 3.335(10) 162 
N(1)−H(1C)···S(16) 0.89 2.89 3.331(10) 112 
N(1)−H(1D)··· S(3)#7 0.89 2.70 3.367(10) 132 
N(1)−H(1D)··· S(15)#7 0.89 2.79 3.390(10) 126 
N(2)−H(2A)··· S(10)#3 0.89 2.78 3.475(10) 136 
N(2)−H(2A)··· S(11)#3 0.89 2.64 3.366(11) 139 
N(2)−H(2B)···S(11)#8 0.89 2.65 3.300(10) 131 
N(2)−H(2C)···S(10) 0.89 2.47 3.220(10) 142 
N(2)−H(2D)···S(4) 0.89 2.39 3.198(10) 151 

2 

D−H··· A d(D−H) d(H··· A) d(D··· A) DHA 

N(1)−H(1A)···S(2) 0.88 2.73 3.549(5) 154 
N(1)−H(1B)···S(14)#8 0.88 2.53 3.382(5) 162 
N(1)−H(1C)···S(14) 0.88 2.45 3.305(5) 162 
N(1)−H(1C)···S(16) 0.88 2.84 3.270(6) 112 
N(1)−H(1D)··· S(3)#10 0.89 2.66 3.321(5) 133 
N(1)−H(1D)··· S(15)#10 0.89 2.76 3.340(5) 125 
N(2)−H(2A)··· S(10)#4 0.89 2.74 3.433(5) 136 
N(2)−H(2A)··· S(11)#4 0.89 2.61 3.306(4) 137 
N(2)−H(2B)···S(11)#9 0.88 2.57 3.231(4) 132 
N(2)−H(2C)···S(6) 0.88 2.74 3.170(5) 111 
N(2)−H(2C)·· ·S(10) 0.88 3.12 3.939(4) 142 
N(2)−H(2D)··· S(4)   0.88 2.31 3.121(5) 153 

Compound 1: Symmetry transformations: #3: x–1/2, –y+2, z+1/2;  
#6: x–1/2, –y+1, z+1/2; #7: x+1/2, –y+1, z+1/2; #8: x, y, z+1. Compound 2: Symmetry transformations: #4: x–1/2, –y+2, z+1/2;  
#8: x–1/2, –y+1, z+1/2; #9: x, y, z+1; #10: x+1/2, –y+1, z+1/2 

 

2. 4  Acid-base resistance experiment  

30 mg sample (1 or 2) was placed in a 20 mL glass 

bottle with 15 mL acidic (pH = 0) and alkaline (pH = 12) 

solution, respectively, which was stirred vigorously for 10 

h. Then the mixture was separated into solid and liquid, 

and the separated solid products were washed with water 

and ethanol. 

2. 5  Electrochemical experiment  

5 mg sample (1 or 2) was placed in a sample tube with 

0.2 mL water, which was sequentially added by 40 uL 

anhydrous ethanol and 10 uL naphthol. The mixture was 

sonicated and shaken in an ultrasonic system for 8 h. Then 

50 uL of the mixture was deposited on a 1 × 4 cm2 

conductive glass with a sample deposition area of 1 × 1 

cm2, which was used as a photoanode. Finally, electroche- 

mical experiments were performed in a three-electrode 

system via an electrochemical workstation using 0.5 M 

sodium sulfate salt solution as the electrolyte. 

 

3  RESULTS AND DISCUSSION  

3. 1  Discussion on synthesis and crystal structures 

1 and 2 were synthesized by the solvothermal method. 1 

could be easily obtained by mixing 0.5 mmol Sb(Ac)3 and 1.5 

mmol S in the mixed solvents of 3 mL NH3·H 2O and 0.5 mL 

N2H4·H 2O, while 2 was afforded by a similar reaction except 

that the additional reagent KCl (1.6 mmol) was added, and the 

amount of solvents was adjusted to 2 mL NH3·H 2O with 1 mL 

N2H4·H 2O. In the synthesis of 2, if KCl was replaced with 

K2CO3 or the amount of S exceeded 1.5 mmol, the 

by-production (NH4)2Sb4S7 would be generated. Therefore, 

KCl plays an important role in the synthesis of 2. In addition, 

the crystals of 1 and 2 could not be obtained without 

N2H4·H 2O. Therefore, the presence of N2H4·H 2O in the 

reaction processes was necessary.  

SCXRD analyses show that 1 and 2 crystallize in 

monoclinic space group Pn. Their asymmetric units both 

contain ten unique Sb sites and sixteen S sites, but two [NH4]+ 

in 1 and 1.4 K+ and 0.6 [NH4]+ in 2 (Fig. 1a). Since the two 

compounds are isomorphic, only the structure of 1 was 

analyzed in detail. As shown in Figs. 1b and 1c, the anionic 
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layer of [Sb10S16]2- consists of three different coordination 

modes of Sb(III), namely [SbS3] (for Sb(1), Sb(3), Sb(4), 

Sb(7), Sb(8) and Sb(10)), [SbS4] (for Sb(5), Sb(6) and Sb(9)), 

and [SbS5] (for Sb(2)). Then the Sb(9)S4 and Sb(10)S3 units 

are jointed together via corner-sharing to form a binuclear 

[Sb2S5] cluster. Sb(3)S3 and Sb(5)S4 or Sb(5)S4 and Sb(6)S3 

units also form the binuclear [Sb2S5] cluster. Sb(9)S4, Sb(1)S3 

and Sb(2)S5 units are connected together via corner-sharing to 

form a trinuclear [Sb3S7] cluster; Sb(6)S4, Sb(7)S3 and 

Sb(8)S3 units are jointed together via corner-sharing to get a 

trinuclear [Sb3S7] cluster; Sb(2)S5, Sb(3)S3 and Sb(4)S3 units 

are linked together by corner-sharing to give a trinuclear 

[Sb3S8] cluster. Then, three [Sb2S5], two [Sb3S8] and one 

[Sb3S7] units are assembled by corner-sharing into a waved 

[Sb10S16]n
2n- anionic layer (Fig. 1c). As shown in Tables 1 and 

2, the Sb−S bond lengths scatter over a range from 2.399 to 

2.926 Å and corresponding S−Sb−S angles are in the range of 

78.65 ～ 175.40°. Their bond lengths and angles are 

comparable to those of reported polymeric anions [Sb5S8]2- or 

[Sb10S16]2- in the literature[11, 18, 38-40]. Additionally, the NH4
+ 

cations are located at the interlayer space of anionic layers, 

which interact with two adjacent [Sb10S16]n
2n- layers through 

N−H··· S bonds, resulting in a three-dimensional supramole- 

cular network (Figs. 1d, 2e and 2f). From Fig. 1 and Table 3, 

N−H··· S hydrogen bonds are found in the range of 

3.198(10)～3.475(10) Å, and N−H··· S angles vary from 

112.3o to 163.0o in 1 (Table 3). 

 

(a)                        (b)                                 (c) 

    

                                (d)                               (e)                            (f) 

Fig. 1.  (a) Asymmetric unit of (NH4)2Sb10S16; (b) Coordination modes of [SbS3], [SbS4] and [SbS5] in [Sb10S16]; (c) 2D anionic layer  

of [Sb10S16]n
2n-

 viewed along the c-axis (The red and blue polyhedra represent [SbS4] and [SbS5], respectively);  

(d) a three-dimensional supramolecular network formed by N−H···S bonds between NH4
+
 cations  

and [Sb10S16]n
2n-

 anionic layer; the N−H···S bonds of N(1)−H···S (e) and N(2)−H···S (f) 

 

The anionic [Sb10S16]n
2n- layers of 1 and 2 resemble that of 

ASb5S8 (A = K, Tl)[11] with the same space group of Pn. The 

[Sb10S16]n
2n- anionic layers have also been found in 

[C6H17N3]Sb10S16
[18], (C3H12N2)[Sb10S16][38], 

[H3N(CH2)3NH3]Sb10S16
[39] and [C6H18N2]Sb10S16·H 2O[40] 

(Table 4). However, these compounds present distinct cell 

parameters and crystallize in three types of space groups, that 

is, type I: Pn for compounds 1, 2 and ASb5S8 (A = K, Tl); 

type II: P21/c for [C6H17N3]Sb10S16 and 

[C6H18N2]Sb10S16·H 2O; type III: P21/n for (C3H12N2)[Sb10S16] 

and [H3N(CH2)3NH3]Sb10S16. If considering the additional 

secondary Sb−S interactions in interlayers, the above 

[Sb10S16]n
2n- layers can be defined as 3D structures. As shown 

in Fig. 2, the type I [Sb10S16]n
2n- layer features unique units of 

six [SbS3], three [SbS4] and one [SbS5] (Fig. 2a); type II 

[Sb10S16]n
2n- layer includes unique units of nine [SbS3] and 

one [SbS4] (Fig. 2b); type III [Sb10S16]n
2n- layer contains [SbS3] 

units only (Fig. 2c). Fig. 2 clearly shows the difference of 

tortuosity of anionic layer in the three types of [Sb10S16]n
2n- 

layers.  
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Table 4.  Comparison of Crystal Parameters of 1 with Other Thioantimonates with the Sb:S Ratio of 1:1.6 
 

 1 KSb5S8 [C6H17N3]Sb10S16 [C6H18N2]Sb10S16H2O (C3H12N2)Sb10S16 [H3N(CH2)3NH3]Sb10S16 

S.G. 
a/Å 
b/Å 
c/Å 
β/º 
V/Å3 

Pn 

8.128 
19.459 
9.103 
91.73 
1439.1 

Pn 

8.137 
19.501 
9.062 
91.93 
1437.2 

P21/c 

11.530 
25.042 
13.709 
111.25 
3689.1 

P21/c 

11.537 
25.110 
13.748 
111.286 
3711.0 

P21/n 

17.480 
10.922 
18.030 
111.42 
3204.6 

P21/n 

18.359(4) 
10.927(2) 
17.389(3) 
111.44(2) 
3247.1 

S.G. = space group; [C6H17N3]2+ = doubly-protonated 2-piperazine-N-ethylamine; [C6H18N2]2+ = doubly-protonated 1,2-diaminopropane; 
[C3H12N2]2+ = doubly-protonated N,N-diethylethylenediamine; [H3N(CH2)3NH3]2+ = doubly-protonated 1,3-propanediamine 

 

    
(a)                                (b)                                   (c) 

Fig. 2.  Comparison of anionic layers for 1 (a), [C6H17N3]Sb10S16 (b) and (C3H12N2)Sb10S16 (c) 

 

3. 2  Powder X-ray diffraction patterns,  

TG and UV-vis spectra 

As shown in Fig. 3a, PXRD patterns for 1 and 2 match well 

with their corresponding simulated ones, indicating the 

phase-purity. In addition, the two compounds were added to 

acidic (pH = 0) and alkaline (pH = 12) solutions in order to 

investigate their acid-base resistances. 1 and 2 are stable even 

under acidic or basic solutions by comparing the PXRD 

patterns of pristine compounds and soaking products (Fig. 3b). 

The results confirm that the 2D anionic layer of [Sb10S16]n
2n- 

can be maintained under strong acidic and alkaline conditions, 

thus indicating good acid and base resistances for both 

compounds. 

 

 
(a)                                             (b) 

Fig. 3.  (a) Simulated and experimental PXRD patterns of 1 and 2; (b) PXRD patterns of the pristine 1 and 2  

and their corresponding products soaked in the acidic or alkaline solutions for 10 h 

 

The thermal stabilities of 1 and 2 were studied by TGA in a 

N2 atmosphere from 30 to 800 ℃. TG curves are shown in Fig. 5a. 

They show the weight loss of 4.05% from 30 to 325 ℃ for 1 

(the theoretical value of 3.96%) and 1.18% from 30 to 330 ℃ 

for 2 (the theoretical value of 1.17%), corresponding to the 

escape of NH3 and H2S molecules, respectively. The optical 
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absorption edges of 1 and 2 are 1.82 and 1.79 eV, respectively, 

falling in the range for semiconductor materials (Fig. 5b). 

Apparently, the lower optical absorption edge of 1 than that of 

2 is consistent with its darker color than that of 2 (Fig. 5b).  

 
(a)                                         (b) 

Fig. 4.  TG curve (a) and optical absorption spectra (b) of compounds 1 and 2.  

Insert image: photograph of a single-crystal for compounds 1 and 2 

 

3. 3  Photoelectric properties 

The photoelectric properties of 1 and 2 were investigated 

by measuring their photocurrent responses under visible light 

irradiation (λ ≥ 420 nm) using a standard three-electrode 

system. From Fig. 5, the rapid and consistent photocurrent 

responses of 1 and 2 were performed in a multiple 10 sec 

switching period under visible light irradiation. 2 exhibits a 

stronger transient photocurrent response, which is about twice 

that of 1. It can be confirmed that 2 has higher photogenerated 

electron transfer efficiency and photogenerated electron-hole 

pairs separation efficiency than 1 under visible light 

irradiation[44]. Meanwhile, the repeatable anodic photocurrent 

responses indicate that 1 and 2 belong to n-type (electron- 

conducting) semiconductor[45, 46]. 

 
Fig. 5.  Photocurrent responses of 1 and 2 under visible light irradiation (λ ≥ 420 nm) 

 

4  CONCLUSION  

 

In conclusion, two new thioantimonates(III) were 

synthesized by a simple solvothermal method, and their 

structures, stabilities and optoelectronic properties were 

studied. They have the same anionic layer of [Sb10S16]n
2n-. The 

acquisition of 2 could be simply achieved by adding KCl 

during the preparation of 1. The stability experiments indicate 

that 1 and 2 have excellent thermal stability and acid-based 

resistances. The photoelectric results and optical absorption 

spectra confirm that 1 and 2 are semiconductors and 2 shows 

better photoelectric property than 1. The current compounds 

enrich the structural diversity of thioantimonates(III), 

especially thioantimonates(III) with NH4
+ cations. The 

synthetic route described in this work should be an effective 

way to prepare novel thioantimonates. 
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