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n EXPERIMENTAL SECTION 
Synthesis of phytate-coordinated nickel foam (PA-NF). Firstly, a piece of commercially available NF (1 cm × 1 cm) was firstly 
immerse in 1.0 M HCl solution for 15 min and washed with acetone and ethanol to remove surface impurities and oxides. A piece of 
NF was dipped in the 70 mL aqueous solution containing 3.0 mL phytic acid for 10 min. Then, the solution was transferred into a 100 
mL Teflon-lined stainless-steel autoclave and maintained at 120 °C for 6 h. The as-synthesized electrode was rinsed with water several 
times and dried at 60 °C in vacuum for 8 h ready for use. As blank control, the NF was treated under the identical conditions in the 
absence of phytic acid. If not otherwise specified, the NF mentioned in the manuscript represents this treated electrode.   

Characterization. X-ray diffraction (XRD) measurements were conducted on Ultima IV with Cu Kα radiation (λ = 0.1541 nm) from 10° 
to 90° at 40 kV and 40 mA. The morphology and energy dispersive X-ray (EDX) mapping of samples were analyzed by a ZEISS 
MERLIN Compact and Oxford X-max operated at an acceleration voltage of 30.0 kV. Fourier-transform infrared (FT-IR, Thermo 
Scientific Nicolet iS5) spectroscopy was used to measure the functional group of PA on the NF surface. X-ray photoelectron spectra 
(XPS) were measured using a Thermo Scientific K-Alpha equipped with Al Kα monochromatized radiation at 1486.6 eV X-ray source. 
All binding energies were referenced to the C 1s peak (284.6 eV) arising from the adventitious carbon-containing species. Raman 
spectra were acquired on an INVIAREFLEX Raman Spectrophotometer with an exciting wavelength of 532 nm.  

Electrochemical Measurements. Electrochemical experiments were conducted on a CHI-760E Electrochemical Workstation (CHI 
Instruments) typically consisting of a standard three-electrode system. The electrochemical investigations of urea oxidation reaction 
(UOR) were performed at room temperature using a saturated calomel electrode (SCE) as reference electrode, a graphite rod as 
counter electrode, and a piece of PA-NF or bare NF served as a working electrode, respectively. 1.0 M KOH solution (40 mL) with or 
without urea was employed. The measured potentials versus the reversible hydrogen electrode (RHE) were calculated according to 
Equation (1): 

E(RHE) = E(SCE) + 0.242 V + 0.0591 × pH = E(SCE) + 1.068 V      (1)                    
All electrochemical investigations were carried out at room temperature (25 ± 1 °C), and the electrolyte was stirred at 800 rpm with a 
magnetic stir bar. Cyclic voltammetry (CV) measurements were performed at a scan rate of 5 mV/s. Operando electrochemical 
impedance spectroscopy (EIS) tests were performed at different applied potentials versus RHE in the frequency range of 0.01-100 k 
Hz was performed by using Autolab PGSTAT302N. 
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Figure S1. FT-IR spectra of the PA-NF and PA molecules. 
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Figure S2. XRD spectrum of PA-NF. 
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Figure S3. High-resolution XPS spectra of fresh and spent PA-NF in P 2p region. 
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Figure S4. Raman spectra of the spent PA-NF and NF after UOR when the electrolyte contained urea. 
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Figure S5. Raman spectra of the spent PA-NF and NF after UOR when the electrolyte does not contain urea. 
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Figure S6. High-resolution XPS spectra of spent PA-NF and NF in Ni 2p3/2 region after UOR when the electrolyte did not contain urea. 
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Figure S7. CV curves of (a) NF and (b) PA-NF electrodes with various scan rates in 1.0 M KOH with urea. 
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Figure S8. Cdl calculated from the CV curves in Figure S7. 
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Figure S9. UOR activity for the PA-NF and NF electrodes normalized to ECSA. 

 



SUPPORTING INFORMATION 

12 
 

Chinese Journal of Structural Chemistry

Table S1. Comparison of Catalytic Performance of the PA-NF with the State-of-the-art Electrocatalysts for UOR in Alkaline Media 

 

 

 

 

 

Catalyst Electrolyte 
E10 

[V vs. RHE] 
Tafel slope 
[mV/dec] 

Ref. 

PA-NF 
1.0 M KOH +  
0.33 M urea 

1.38 64.1 This work 

NF 
1.0 M KOH +  
0.33 M urea 

1.65 168.2 This work 

N-NiS 
1.0 M KOH + 0.33M 

urea 
1.62 158.0 Ref. [1] 

N-NiS2 
1.0 M KOH +  
0.33 M urea 

1.62 186.0 Ref. [1] 

Ni(OH)2 NA/CC 
1.0 M KOH +  
0.33 M urea 

1.81 180.0 Ref. [2] 

Ni3N NA/CC 
1.0 M KOH +  
0.33 M urea 

1.44 172.0 Ref. [2] 

RuO2 
1.0 M KOH +  
0.33 M urea 

1.53 125.0 Ref. [2] 

2D NiS2/Ti 
1.0 M KOH +  
0.5 M urea 

1.82 144.6 Ref. [3] 

NiTe2/Ni(OH)2 
1.0 M KOH +  
0.33 M urea 

1.42 133.0 Ref. [4] 

Co3O4@Co2P4O12 
1.0 M KOH +  
0.5 M urea 

1.56 126.0 Ref. [5] 

MnO2/MnCo2O4/Ni  
1.0 M KOH +  
0.5 M urea 

1.58 72.0 Ref. [6] 

Ni/C-1 
1.0 M KOH +  
0.3 M urea 

1.60 77.0 Ref. [7] 

Ni2P/CFC 
1.0 M KOH +  
0.33 M urea 

1.40 78.2 Ref. [8] 

CoS2 NA/Ti 
1.0 M KOH +  
0.3 M urea 

1.59 80.0 Ref. [9] 

Ni@S-C-500 
1.0 M KOH +  
0.33 M urea 

1.41 98.9 Ref. [10] 

Ni@NCNT 
1.0 M KOH +  
0.5 M urea 

1.38 76.1 Ref. [11] 

a-Ni2P/G 
1.0 M KOH +  
0.33 M urea 

1.28 – Ref. [12]  

NiF3/Ni2P@CC-2 
1.0 M KOH +  
0.33 M urea 

1.36 33 Ref. [13]  

Ni2Fe(CN)6 
1.0 M KOH +  
0.33 M urea 

1.34 – Ref. [14] 

Ni2P/N-Cnanorods-2h 
1.0 M KOH +  
0.33 M urea 

1.39 36.7 Ref. [15] 

NiFe-PBA/NF 
1.0 M KOH +  
0.33 M urea 

1.35 – Ref. [16] 

NiWO4-TA950 
1.0 M KOH +  
0.5 M urea 

1.35 26.4 Ref. [17] 

Ni(OH)2/CuO NWs/CF 
1.0 M KOH +  
0.5 M urea 

1.31 14 Ref. [18]  

Rh-NCs/NiO-NSs 
1.0 M KOH +  
0.33 M urea 

1.39 36.6 Ref. [19]  

NCVS-3 
1.0 M KOH +  
0.33 M urea 

1.36 – Ref. [20]  
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Table S2. ICP-MS Investigations of the Electrolyte for PA-NF after UOR 

Total electrolyte 
volume (mL) 

Electrolyte volume for 
ICP-MS (mL) 

Measured metal 
content (ppm) 

Mass of leached 
metal in electrolyte 

(mg) 

Mass of 
PA-NF 
(mg) 

Metal loss 
(%) 

40 4 1.0 0.04 55.4 0.1 
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Table S3. The Fitted EIS Parameters for NF and PA-NF at Various Potentials 

Electrode 
E 

[V vs. RHE] 
Rs [Ω] n1 

R1 
[Ω] 

CPE1 
[F sn-1] 

R2 [Ω] 
C2 

[mF] 

PA-NF 

1.2 3.2 0.85 25.1 0.0033 251.2 1.0 
1.25 3.3 0.83 26.2 0.0046 95.5 4.0 
1.3 3.1 0.83 27.3 0.0079 33.1 13.0 

1.35 3.5 0.82 28.4 0.0117 12.0 33.1 
1.4 3.4 0.82 29.9 0.027 6.1 100.4 

1.45 3.6 0.87 30.1 0.0409 3.0 129.9 
1.5 3.0 0.86 31.3 0.0502 1.1 140.6 

 1.55 3.2 0.85 31.7 0.0601 – – 

NF 

1.2 3.5 0.85 27.1 0.0030 1368.1 2.4 
1.25 3.6 0.86 29.2 0.0028 750.2 3.4 
1.3 3.2 0.88 30.3 0.0058 354.8 3.8 

1.35 3.4 0.86 31.4 0.0147 151.4 6.7 
1.4 3.3 0.91 32.9 0.0216 74.1 13.0 

1.45 3.2 0.83 33.1 0.0339 36.3 21.0 
1.5 3.8 0.81 33.9 0.0510 10.8 22.0 

 1.55 3.5 0.82 34.7 0.0612 – – 
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Table S4. Calculated ECSA Values of Various Electrodes for UOR 

Catalytic 
electrodes Cdl [mF] aECSA [cm2] 

 

PA-NF 41.2 1030.0  
NF 5.9 147.5  

a ECSA = Cdl/0.040 mF cm-2 
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