Just Accepted

Just Accepted Articles have been posted online after technical editing and typesetting for immediate view. The final edited version with page numbers will appear in the Current Issue soon.
Submit a Manuscript
Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries

Shaojie Ding, Henan Wang, Xiaojing Dai, Yuru Lv, Xinxin Niu, Ruilian Yin, Fangfang Wu, Wenhui Shi, Wenxian Liu*, Xiehong Cao

https://doi.org/10.1016/j.cjsc.2024.100302

Zinc-air batteries; Oxygen reduction reaction; Electrocatalysis; Nitrogen-doped carbon; Temperature adaptability

ABSTRACT

Flexible zinc-air batteries (FZABs) are featured with safety and high theoretical capacity and become one of the ideal energy supply devices for flexible electronics. However, the lack of cost-effective electrocatalysts remains a major obstacle to their commercialization. Herein, we synthesized a porous dodecahedral nitrogen-doped carbon material with Co and Mn bimetallic co-embedding (CoxMn1−x@NC) as a highly efficient oxygen reduction reaction (ORR) catalyst for ZABs. The incorporation of Mn effectively modulates the electronic structure of Co sites, which may lead to optimized energetics with oxygen-containing intermediates thereby significantly enhancing catalytic performance. Notably, the optimized Co4Mn1@NC catalyst exhibits superior E1/2 (0.86 V) and jL (5.96 mA cm−2) compared to Pt/C and other recent reports. Moreover, aqueous ZAB using the Co4Mn1@NC as a cathodic catalyst demonstrates a high peak power density of 163.9 mW cm−2 and maintains stable charging and discharging for over 650 h. Furthermore, FZAB based on the Co4Mn1@NC can steadily operate within the temperature range of -10 °C to 40 °C, demonstrating the potential for practical applications in complex climatic conditions.

PDF Download PDF Download Supporting Information

Download Times 0 Article Views 75