Just Accepted

Just Accepted Articles have been posted online after technical editing and typesetting for immediate view. The final edited version with page numbers will appear in the Current Issue soon.
Submit a Manuscript
Tailoring the electronic structure of PdAgx alloy nanowires for high oxygen reduction reaction

Fan Yang, Ruiqin Ren, Xiaojia Zhang, Muhammad Waqas, Xinglan Peng, Limin Wang, Xiaotian Liu, Du-Hong Chen*, Youjun Fan*, Wei Chen*

Hollow nanowire; Palladium catalyst; Tailoring the electronic structure; Oxygen reduction reaction; Composition-performance relationship


Lowering the cost while maintaining the highly catalytic performance is greatly beneficial for the development of commercial fuel cells and metal-air batteries. Compared with platinum, palladium holds a stronger oxygen affinity and high abundance on earth, endowing it a promising alternative to platinum in anion-exchange membrane fuel cells. However, the sluggish oxygen reduction reaction of palladium still remains a great issue and requires the design of stable and efficient palladium-based electrocatalysts. Here, we report the solvothermal/hydrothermal reduction method to prepare a series of PdAgx nanowires. The prepared PdAgx NWs exhibit hollow structure, which greatly improves the utilization of Pd atoms, offering an outstanding ORR performance. Specifically, PdAg2 NWs exhibit an onset potential of 0.92 V and mass activity of 350.7 mA mgPd−1 at 0.7 V vs. RHE for ORR in 0.1 M KOH solution. This work provides a novel approach for the construction of hollow NWs and their subsequent applications in other electrocatalytic reactions.

PDF Download PDF Download Supporting Information

Download Times 0 Article Views 50