Cover Picture
Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions

Kaihui Huang, Boning Feng, Xinghua Wen, Lei Hao, Difa Xu, Guijie Liang*, Rongchen Shen*, Xin Li*

Submit a Manuscript
Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production

Zhen Shi, Wei Jin, Yuhang Sun, Xu Li, Liang Mao, Xiaoyan Cai*, Zaizhu Lou*

Chin. J. Struct. Chem., 2023, 42: 100201. DOI: 10.1016/j.cjsc.2023.100201

December 15, 2023

Photocatalysis; p-n heterojunction; Charge separation; Hydrogen evolution

ABSTRACT

The practical application of hexagonal ZnIn2S4 (ZIS) as a visible-light photocatalyst for hydrogen (H2) production is hindered by rapid internal charge recombination. In this study, we successfully synthesized Cu2CoSnS4 (CCTS) nanocrystals and loaded them onto the surface of ZIS nanosheets to create a p-n heterojunction photocatalyst. The optimized Cu2CoSnS4/ZnIn2S4 (CCTS/ZIS) heterojunction exhibited a significantly higher visible-light photocatalytic H2 evolution rate of 4.90 mmol·g−1·h−1 compared to ZIS and CCTS alone. The enhanced photocatalytic efficiency was attributed to improved electron transfer and charge separation at the heterojunction interface. The formation of p-n heterojunction facilitated the accumulation of valence band electrons in ZIS and conduction band holes in CCTS, effectively suppressing the recombination of photogenerated electrons and holes. Theoretical calculations, spectroscopic, and photoelectrochemical characterizations supported the findings. This work presents a promising approach for designing efficient p-n heterojunction semiconductor photocatalysts for practical applications in visible-light-driven hydrogen evolution.
PDF Download PDF Download Supporting Information

Download Times 0 Article Views 550