Cover Picture
Insight into stable, concentrated radicals from sulfur-functionalized alkyne-rich crystalline frameworks and application in solar-to-vapor conversion
Jian-Rong Li, Jieying Hu , Lai-Hon Chung, Jilong Zhou, Parijat Borah, Zhiqing Lin, Yuan-Hui Zhong, Hua-Qun Zhou, Xianghua Yang, Zhengtao Xu*, Jun He*
Submit a Manuscript
PVDF-based solid-state battery

Biao Fang, Runwei Mo*

Chin. J. Struct. Chem., 2024, 43: 100347. DOI: 10.1016/j.cjsc.2024.100347

August 15, 2024

ABSTRACT

PVDF-based solid-state batteries are characterized by high energy density and high safety, which exhibit good prospects for application. At the microscopic level, the structural changes and ionic transport pathways of the polymers were improved by doping with inorganic fillers, which weakened the space charge layer and improved the mechanical strength and ionic conductivity. The introduction of appropriate fillers at the cathode can be realized to match the high quality loaded cathode. In recent years, there have been many studies on the modification of polymer electrolytes using various fillers, which improved the electrochemical window and cycle life. However, the research work on interfacial contact is still relatively small so far. Therefore, future studies should focus on the electrode-electrolyte interface to inhibit the formation of lithium dendrites at the lithium-metal anode interface, which could improve the electrochemical stability of the electrode-electrolyte interface.


PDF Download PDF Download Supporting Information

Download Times 0 Article Views 628