Lizhang Chen, Yu Fang, Mingxin Pang, Ruoxu Sun, Lin Xu*, Qixing Zhou*, Yawen Tang*
Chin. J. Struct. Chem., 2025, 44(1), 100461. DOI: 10.1016/j.cjsc.2024.100461
January 1, 2025
ABSTRACT
Developing the renewable hydrogen technologies requires high-efficiency pH-universal hydrogen evolution reaction (HER) electrocatalysts. Ruthenium phosphides (RuPx) have the great potentials to replace the commercial Pt-based materials, whereas the optimization of their electronic structure for favorable reaction intermediate adsorption remains a significant challenge. Herein, we report an innovative phosphorization-controlled strategy for the in-situ immobilization of core/satellite-structured RuP/RuP2 heteronanoparticles onto N, P co-doped porous carbon nanosheets (abbreviated as RuP/RuP2@N/P-CNSs hereafter). Density functional theory (DFT) calculations further reveal that the electron shuttling at the RuP/RuP2 interface leads to a reduced energy barrier for H2O dissociation by electron-deficient Ru atoms in the RuP and the optimized H* adsorption of electron-gaining Ru atoms in the RuP2. Impressively, the as-synthesized RuP/RuP2@ N/P-CNSs exhibits low overpotentials of 8, 29, and 66 mV to achieve 10 mA cm-2 in alkaline, acid and neutral media electrolyte, respectively. This research presents a viable approach to synthesize high-efficiency transition metal phosphide-based electrocatalysts and offers a deeper comprehension of interface effects for HER catalysis.