Just Accepted Articles have been posted online after technical editing and typesetting for immediate view. The final edited version with page numbers will appear in the Current Issue soon.
The degradation of organic pollutants in water is a critical environmental challenge. The iron-doped MoS2 catalysts have demonstrated potential in activating peroxymonosulfate (PMS) for environmental remediation, but they face challenges such as poor conductivity, limited electron transfer efficiency, and a scarcity of active sites. To address these issues, we successfully synthesized a nano-flowers FeS/MoS2 composite derived from polyoxometalates (NH4)3[Fe(III)Mo6O24H6]·6H2O (denoted as FeMo6) as the bimetallic precursors. This synthesis strategy enhances the interaction between FeS and MoS2, thereby facilitating electron transfer. Notably, the introduction of sulfur vacancies in FeS/MoS2 exposes additional Mo4+ active sites, facilitating the redox cycle of Fe2+/Fe3+ and accelerating the regeneration of Fe2+, which in turn enhances PMS activation. Therefore, a catalytic oxidation system of FeS/MoS2/PMS is presented that primarily relies on SO4•- and •OH, with 1O2 as a supplementary oxidant. This system exhibits exceptional degradation efficiency for p-chlorophenol (4-CP), achieving 100% degradation within 10 minutes over a wide pH range of 2.4 to 8.4. The robust performance and wide applicability of FeS/MoS2 catalyst make it a promising candidate in advanced oxidation processes (AOPs) for environmental remediation.