Computational Insights into the Excited State Intramolecular Proton Transfer Reactions in Ortho-hydroxylated Oxazolines

LIU Gai-Mei, MA Wei-Jia, WANG Yan*, YANG Yan and SONG Xin-Jian

Chin. J. Struct. Chem. 2021, 40, 540-548  DOI: 10.14102/j.cnki.0254-5861.2011-2990

May 15, 2021

xcited-state intramolecular proton transfer, electron donating group, ortho-hydroxylated oxazolines, potential energy curves

ABSTRACT

Excited-state intramolecular proton transfer (ESIPT) reactions of three ortho-hydroxylated oxazolines, 2-(4,4-dimethyl-4,5-dihydro-oxazol-2-yl)-phenol (DDOP), 4-(4,4-dimethyl-4,5-dihydro-oxazol- 2-yl)-[1,1΄-biphenyl]-3-ol (DDOP-C6H5) and 4-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-3-hydroxy-benzonitrile (DDOP-CN), have been systematically explored by density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. Two stable configurations (enol and keto forms) are found in the ground states (S0) for all the compounds while the enol form only exists in the first excited states (S1) for the compound modified with electron donating group (-C6H5). In addition, the calculated absorption and emission spectra of the compounds are in good agreements with the experiments. Infrared vibrational spectra at the hydrogen bond groups demonstrate that the intramolecular hydrogen bond O(1)−H(2)···N(3) in DDOP-C6H5 is strengthened in the S1 states, while the frontier molecular orbitals further reveal that the ESIPT reactions are more likely to occur in the S1 states for all the compounds. Besides, the proton transfer potential energy curves show that the enol forms can barely convert into keto forms in the S0 states because of the high energy barriers. Meanwhile, intramolecular proton transfer of all the compounds could occur in S1 states. The ESIPT reactions of the ortho-hydroxylated oxazolines are barrierless processes for unsubstituted DDOP and electron withdrawing substituted DDOP-CN, while the electron donating substituted DDOP-C6H5 has a small barrier, so the electron donating is unfavorable to the ESIPT reactions of ortho-hydroxylated oxazolines.

PDF Download PDF Download Supporting Information

Download Times 294 Article Views 546