Cover Picture
Unraveling the Dynamic Structural Evolution of Phthalocyanine Catalysts during CO2 Electroreduction
Jianing Mao, Bingbao Mei*, Ji Li, Shuai Yang, Fanfei Sun, Siyu Lu, Wei Chen, Fei Song* and Zheng Jiang*

Phthalocyanine catalysts have well-defined active site structures that allow reaction-based mechanism exploration. In this regard, the actual behaviors of metal ions in the phthalocyanine catalysts have aroused considerable attention. Operando high-energy resolution fluorescence detected X-ray absorption (HERFD-XANES) can be employed in the practical situation of electrocatalysis to realize the interfacial interaction between metal ions and the reactants, offering a unique insight into the active site geometry and structural evolution during CO2 reduction. In this work, the CO2RR to CO dominates over the HER with Faradaic efficiency reaching the maximum value of 89% at 0.85 V versus RHE. The results demonstrate the atomically dispersed, low-valent Ni(I) centres with high intrinsic CO2 reduction activity.

Submit a Manuscript
In-Situ Synchrotron Radiation Infrared Spectroscopic Identification of Reactive Intermediates over Multiphase Electrocatalytic Interfaces

Wanlin Zhou, Jingjing Jiang, Weiren Cheng, Hui Su* and Qinghua Liu*

Chin. J. Struct. Chem. 2022, 41, 2210004-2210015  DOI: 10.14102/j.cnki.0254-5861.2022-0083

October 25, 2022

synchrotron radiation, infrared spectroscopy, in-situ, reaction dynamics

ABSTRACT

A comprehensive understanding of the microscopic reaction mechanisms at the gas-solid-liquid electrochemical interfaces is urgently required for the development of advanced electrocatalysts applied in burgeoning sustainable energy conversion systems. In-situ synchrotron radiation Fourier transform infrared (SR-FTIR) spectroscopy is one of the most powerful techniques for investigating the evolving dynamics of reactive intermediates during electrocatalytic reactions. In this review, we methodically summarize the recent progress in the research of dynamic mechanisms for valuable electrocatalytic reactions based on in-situ SR-FTIR methodology. Moreover, the merits and drawbacks of SR-FTIR spectroscopy, the design principles of infrared beam setups and in-situ cells, as well as the in-situ measurement criteria are also discussed in detail. Lastly, the potential challenges and opportunities in this field are prudently stated. This review is expected to stimulate a broad interest in the material science and electrochemistry communities for exploring the dynamic mechanisms of prominent catalysis at the atomic/molecular level by using SR-based spectroscopy.



PDF Download PDF Download Supporting Information

Download Times 977 Article Views 1417